

Quarks and glue inside hadrons in the instanton vacuum The hadronic / partonic structure dominated by QCD vacuum

Wei-Yang Liu

LaMET 2024, UMD

August 13 2024

Wei-Yang Liu (LaMET 2024, UMD) Quarks and glue inside hadrons in the ins Augu

(B)

QCD scales

- Hard: perturbative QCD
- Semi-hard: quark-instanton, gluon-instanton coupling
- Soft: quark-meson dynamics (instanton)
- **Ultrasoft:** χ PT, meson dynamics (instanton)

イロン イボン イヨン イヨン 三日

How to describe nonperturbative phenomena by QCD?

"Buried treasure in the sand of the QCD vacuum"

Visualization of QCD Vacuum

- A RYLA TO
- **QCD** vacuum is topologically active at 0.6 0.7 GeV
- Instanton vacuum stabilized at ($n_I = 1 \text{ fm}^{-4}$ and $\rho = 1/3 \text{ fm}$)
- Zero energy tunnelling event between topological vacua $\Delta n_{CS} = \pm 1$
- Gluon plane waves are almost negligible

P. J. Moran, D. B. Leinweber (2008)

J. C. Biddle, W. Kamleh, D. B. Leinweber (2020)

Gluon dynamics encoded in the instanton density n_{\pm}

$$\langle \mathcal{O}_{QCD} \rangle_{N_{\pm}} = n_{+} \langle \mathcal{O}_{+}[q,\bar{q}] \rangle + n_{-} \langle \mathcal{O}_{-}[q,\bar{q}] \rangle + \frac{n_{+}^{2}}{2} \langle \mathcal{O}_{++}[q,\bar{q}] \rangle + n_{+}n_{-} \langle \mathcal{O}_{+-}[q,\bar{q}] \rangle + \frac{n_{-}^{2}}{2} \langle \mathcal{O}_{--}[q,\bar{q}] \rangle + \cdots$$

Grand Canonical Ensemble: Fluctuations

$$G^2 \rightarrow \bar{N} = N_+ + N_- \text{ and } G\tilde{G} \rightarrow \Delta = N_+ - N_-$$
Eluctuations

 $\mathcal{P}(N_+, N_-) \propto \left(\frac{\bar{N}^N}{N!}\right)^{b/4} \frac{1}{\sqrt{2\pi\chi_t}} \exp\left(-\frac{\Delta^2}{2\chi_t}\right)$ (1)

Topological compressibility: trace anomaly

$$\sigma = \frac{4}{b}\bar{N} \tag{2}$$

Topological susceptibility: chiral anomaly

$$\chi_t = \bar{N} \left(1 + N_f \frac{m^*}{m} \right)^{-1} \tag{3}$$

Topological charge on lattice

7/32

э

Ne light quarks deflected by

N_f light quarks deflected by instantons

$\Theta_I =$

 $\langle ar{q}q
angle
eq 0$

Spontaneous chiral symmetry breaking

Delocalization of zero modes Mott transition (axial charge)

Quarks in Instanton Vacuum

■ Constituent massless quarks acquire mass from delocalization

• 't Hooft effective Lagrangian ($N_f = 2$)

$$\mathcal{L}_{I} = \frac{G_{I}}{8N_{c}^{2}} \left[(\bar{\psi}\psi)^{2} - (\bar{\psi}\tau^{a}\psi)^{2} - (\bar{\psi}i\gamma^{5}\psi)^{2} + (\bar{\psi}i\gamma^{5}\tau^{a}\psi)^{2} \right]$$

■ Constituent mass $M \sim 350 - 390$ MeV ■ Instanton size $\rho \rightarrow$ natural cut-off

イロト イボト イヨト イヨト 三日

G. 't Hooft, Phys. Rev. D 14, 3432 (1976);

W.-Y. Liu, I. Zahed, Phys. Rev. D 107 (2023) 9, 094024

Instanton Molecules

- Instantons are correlated
- Instanton molecules are important \rightarrow vector meson (ρ), tensor glueball (T^{++}), odd glueball (dGGG)
- Molecule-inducced interations penalized by instanton density

(b)

(c)

$$\begin{aligned} \mathcal{L}_{I\bar{I}} &= \frac{G_{I\bar{I}}}{2N_{c}^{2}} \bigg\{ 4 \left[(\bar{\psi}\psi)^{2} + (\bar{\psi}\tau^{a}\psi)^{2} + (\bar{\psi}i\gamma^{5}\psi)^{2} + (\bar{\psi}i\gamma^{5}\tau^{a}\psi)^{2} \right] - 4(\bar{\psi}\gamma^{\mu}\gamma^{5}\psi)^{2} \\ &- \left[(\bar{\psi}\gamma^{\mu}\psi)^{2} + (\bar{\psi}\tau^{a}\gamma^{\mu}\psi)^{2} + (\bar{\psi}\gamma^{\mu}\gamma^{5}\psi)^{2} + (\bar{\psi}\tau^{a}\gamma^{\mu}\gamma^{5}\psi)^{2} \right] \bigg\} \end{aligned}$$

Spin-0 meson spectrum

$$ho=$$
 0.3 fm and $n_{I+A}=$ 1 fm $^{-4}$

Model	m_{σ} (MeV)	$m_{\pi^0}~({ m MeV})$	$m_{\pi^\pm}~({ m MeV})$
ILM $(N_f = 2)$	683.73	139.4	139.4
ILM $(N_f = 3)$	677.62	142.00	142.00
PDG	400 - 800	134.9766(6)	139.57018(35)

Model	$m_{K^{\pm}}$ (MeV)	m_{K^0,\bar{K}^0} (MeV)	$m_\eta~({ m MeV})$
$ILM(N_f = 3)$	458.00	458.00	524.22
PDG	493.677(13)	497.611(13)	547.862(17)

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

11 / 32

Spin-1 meson spectrum

Model	m_{ω} (MeV)	$m_ ho$ (MeV)	m_{f_1} (MeV)	m_{a_1} (MeV)
$ILM(N_f = 2)$	790.0	790.0	—	_
$ILM(N_f = 3)$	787.23	787.23	_	_
PDG	782.65(12)	775.26(25)	1281.9(5)	1230(40)

Meson correlator on lattice

Pion Electromagnetic Form Factor

$$\left\langle \pi' \left| J^{\mu}_{EM} \right| \pi
ight
angle = 2 F_{\pi}(Q^2) (p+p')^{\mu}$$

Lat: Xiang Gao, Nikhil Karthik, Swagato Mukherjee, Peter Petreczky, Sergey Syritsyn, and Yong Zhao Phys. Rev. D 104, 114515

Rho Charge Form Factor

$$F_{\rho}(Q^{2}) = \frac{1}{2P^{+}} \left[\frac{1}{3} \sum_{\lambda} \langle \rho' | J_{EM}^{+} | \rho \rangle \right]$$
(4)

Wei-Yang Liu, Ismail Zahed, Phys. Rev. D 109 (2024), 074029

Pion DA

Lat: RQCD (Gunnar S. Bali, Vladimir M. Braun, Simon Bürger, Meinulf Göckeler, Michael Gruber, Fabian Hutzler, Piotr Korcyl, Andreas Schäfer, André Sternbeck Philipp Wein)

Pion PDF

Wei-Yang Liu, Ismail Zahed, Phys. Rev. D 107 (2023) 9, 094024

Kaon PDF

 $u_{K^+}(\mathbf{x}) / u_{\pi^+}(\mathbf{x})$ 1.2 ILM ($\rho=0$), $\mu=5.2 \text{ GeV}$ 1.0 ILM, μ =5.2 GeV 0.8 Kock et. al, μ =5.2 GeV DSE (2011) _ 0.6 CERN-NA3 (1983) . 0.4 MSULat (2020), µ=5.2 GeV 0.2 X 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Wei-Yang Liu, Ismail Zahed, Phys. Rev. D 107 (2023) 9, 094024 (D) (2023) 9,

Kaon PDF

Wei-Yang Liu, Ismail Zahed, Phys. Rev. D 107 (2023) 9, 094024

Twist-2 and Twist-3 pion DA

20 / 32

Twist-2 and Twist-3 ρ_{\parallel} DA

22 / 32

Twist-2 and Twist-3 ρ_{\perp} DA

Pion Gravitational Form Factor

$$\langle \pi' | T^{\mu\nu} | \pi
angle = 2 \bar{p}^{\mu} \bar{p}^{\nu} A_{\pi}(Q^2) + \frac{1}{2} (q^{\mu}q^{\nu} - g^{\mu\nu}q^2) D_{\pi}(Q^2)$$

Lattice: Phiala E. Shanahan

Pion Gravitational Form Factor

Lattice: Phiala E. Shanahan

Pion Shear and Pressure

related to $D_{\pi}(Q^2)$ in the coordinate space

Mass Distribution in Nucleon

<ロ><26/32

Spin Sum Rule in Nucleon

$$S_N = \frac{1}{2}\Sigma_q + L_q + J_q$$

Scalar glueball form factor of Nucleon

$$-\frac{b}{32\pi^2}\langle N'|g^2G_{\mu\nu}^2|N\rangle=M_NG_N(Q^2)\bar{u}_s(P')u_s(P)$$

Lattice: χ QCD (Yi-Bo Yang)

・ロ ・ ・ 一 ト ・ 三 ト ・ 三 ・ つ へ ()
28 / 32

Scalar glueball form factor of pion

Lattice: χ QCD (Yi-Bo Yang)

Trace anomaly form factor of pion

Lattice: Phiala E. Shanahan

Instanton on quasi-PDF

Packing fraction characterizes the nonperturbative power correction

$$\sqrt{\kappa} \sim e^{-4\pi/blpha_s} =
ho^2 \Lambda_{QCD}^2$$

Yizhuang Liu, Ismail Zahed, arxiv: 2102.07248 [hep-ph]

Instanton Liquid Model Remarks

- QCD vacuum is topologically active at 0.6 0.7 GeV (instanton)
- Instanton dominates light meson dynamics: σ , π , K, η , ω , ρ , etc.
- Diquarks \rightarrow light baryons: $p, n, \Sigma, \Lambda, \Xi$
- Iow energy gluon dynamics is encoded in the instanton density fluctuation
- perturbative gluon dynamics can be recovered by the QCD evolution
- ILM provides solid framework for both quark and gluonic content (glueballs, mesons) inside any light hadrons.
- EM (neutron EDM), axial, gravitational form factors, PDF, DA, TMD, GPD (any light hadrons)
- Not only quark content but also gluon content (notorious for lattice)

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●