LCDA moments of meson

Speaker: JI-Hao Wang Institute of Theoretical Physics, Chinese Academy of Sciences

> LaMET 2024 Aug. 12th . 2024

- Motivation and Formula
- Results for first moments
- Results for second moments
- Summary

Motivation

Light-cone distribution amplitudes (LCDAs) plays an important role in the hardon hard exclusive reactions.

There are two ways to extract information of LCDA on lattice:

- 1. Calculate the quasi-DA on the lattice and match it to the LCDA through LaMET.
- 2. Calculate moments using local operator on lattice and reconstruct the LCDA.

Gegenbauer moments	a_1	a_2	a_3	a_4
π		0.258(70)(52)		0.122(46)(31)
K	-0.108(14)(51)	0.170(14)(44)	-0.043(06)(22)	0.073(08)(21)

 $\xi_2^{\pi} = 0.300(41), \ \xi_2^K = 0.258(32)$

Results from J. Hua et al. (Lattice Parton Collaboration), Phys. Rev. Lett. 129, 132001 (2022).

M	RI^{\prime}	order	$\langle \xi^2 angle_M$	a_2^M
π	SMOM	$N^{3}LO$	$0.240^{+6}_{-6}(2)_r(3)_a(2)_m$	$0.116^{+16}_{-17}(4)_r(9)_a(5)_m$
π	SMOM	NNLO	$0.234^{+6}_{-6}(4)_r(4)_a(2)_m$	$0.101^{+17}_{-17}(12)_r(10)_a(5)_m$
π	SMOM	NLO	$0.227^{+6}_{-6}(5)_r(5)_a(2)_m$	$0.078^{+18}_{-19}(16)_r(13)_a(5)_m$

Results from Bali, G.S., Braun, V.M., Bürger, S. *et al. J. High Energ. Phys.* **2019**, 65 (2019).

Formula

 $\begin{array}{l} \text{LCDA definition: } \langle \Omega | \bar{q}_2(z_2 n_\mu) e^{i \int_{z_2}^{z_1} A_\mu(x n_\mu) dx} \not{\!\!\!\!/} \gamma_5 q_1(z_1 n_\mu) | M(\vec{p}) \rangle = i f_M p \cdot n \int_{-1}^{1} dx \, e^{-i(z_1 x + z_2(1-x))p \cdot n} \phi_M(x, \mu^2) \\ \end{array} \\ \begin{array}{l} \text{Moments definition} \\ \xi = x - (1-x) = 2x - 1 \\ \langle \xi^n \rangle_M(\mu^2) = \int_{-1}^{1} dx (2x-1)^n \phi_M(x, \mu^2) \end{array} \end{array} \\ \begin{array}{l} \text{The moments could be extracted from hadron matrix elements of twist-2 operators:} \\ M_{\rho\mu_1 \dots \mu_{k+l}}^{(k,l)} = \bar{q}_2(x) \overleftarrow{D}_{(\mu_1} \dots \overleftarrow{D}_{\mu_k} \overrightarrow{D}_{\mu_{k+1}} \dots \overrightarrow{D}_{\mu_{k+l}} \gamma_{\rho}) \gamma_5 q_1(x) \end{array} \end{array}$

For first moments:

$$\mathcal{O}_{\rho\mu}^{-}(x) = \bar{q}_{2}(x) \left[\overleftarrow{D}_{(\mu} - \overrightarrow{D}_{(\mu)} \right] \gamma_{\rho} \gamma_{5} q_{1}(x) ,$$

$$\langle \Omega | \mathcal{O}_{\rho\mu}^{-} | M(\vec{p}) \rangle = i f_M p_{(\rho} p_{\mu} \langle \xi \rangle$$

For second moments:

$$\mathcal{O}_{\rho\mu\nu}^{\pm}(x) = \bar{q}_{2}(x) \left[\overleftarrow{D}_{(\mu}\overleftarrow{D}_{\nu} \pm 2\overleftarrow{D}_{(\mu}\overrightarrow{D}_{\nu} + \overrightarrow{D}_{(\mu}\overrightarrow{D}_{\nu} \right] \gamma_{\rho)}\gamma_{5}q_{1}(x), \qquad \langle \Omega | \mathcal{O}_{\rho\mu\nu}^{-} | M(\vec{p}) \rangle = if_{M}p_{(\rho}p_{\mu}p_{\nu)} \langle \xi^{2} \rangle \\ \langle \Omega | \mathcal{O}_{\rho\mu\nu}^{+} | M(\vec{p}) \rangle = if_{M}p_{(\rho}p_{\mu}p_{\nu)} \langle 1^{2} \rangle$$

The $\mathcal{O}_{\rho\mu\nu}^{-}$ and $\mathcal{O}_{\rho\mu\nu}^{+}$ would mixing under the renormalization. $Z_{q}^{-1}\sum_{m''}^{M} Z_{mm''}\sum_{i}^{d} \operatorname{Tr}\left[\Lambda_{m''}^{(i)}(p_{1},p_{2})\Lambda_{m',\text{tree}}^{(i)}(p_{1},p_{2})\right] = \sum_{i}^{d} \operatorname{Tr}\left[\Lambda_{m,\text{tree}}^{(i)}(p_{1},p_{2})\Lambda_{m',\text{tree}}^{(i)}(p_{1},p_{2})\right] \Big|_{p_{1}^{2}=p_{2}^{2}=(p_{1}-p_{2})^{2}}$

Pseudo scalar meson

For first moments:

$$R_{1,a}^{-} = -\frac{i}{3} \sum_{i=1}^{3} \frac{1}{p_i} \frac{\sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \langle \mathcal{O}_{4i}^{-}(\vec{x},t)P(\vec{0},0) \rangle}{\sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \langle A_4(\vec{x},t)P(\vec{0},0) \rangle} \qquad R_{1,b}^{-} = -\frac{4E}{3E^2 + p^2} \frac{\sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \langle \mathcal{O}_{44}^{-}(\vec{x},t)P(\vec{0},0) \rangle}{\sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \langle A_4(\vec{x},t)P(\vec{0},0) \rangle}$$

For second moments:

Vector meson

Renormalization

smearing can help reduce the mixing effect.

Lattice set up

Fermion action use the 1step-HYP smearing clover action on MILC ensembles

	a12m310		a12m130	a09m310		a06m310	
L ³ xT	24 ³ x64		48 ³ x64	32 ³ x96		48 ³ x144	
Lattice spacing	~ 0.1	12fm	~ 0.12fm	~ 0.0	D9fm	~ 0.0	D6fm
m_{π}	~310MeV		~130MeV	~310MeV		~310MeV	
C _{SW}	1.0508		1.0508	1.0424		1.03493	
am_l	-0.0695	-0.0785	-0.0785	-0.0514	-0.0580	-0.0398	-0.0439
am_s	-0.0312	-0.0191	-0.0191	-0.0227	-0.0174	-0.0242	-0.0191

Hardon matrix elements: Coulomb wall source and gaussian point source.

Renormalization: Volume source with
$$p = \frac{2\pi}{n_s}(n, n, 0, 0)$$
 and $p = \frac{2\pi}{n_s}(n, 0, n, 0)$ (n = 2, 3 ... $\frac{n_s}{2} - 1$)

Gaussian vs Coulomb wall

Gaussian use constant fit Coulomb wall use two-state fit The Coulomb wall has a smaller error bar

The Gaussian point source has a smaller excited state effect.

K First Moments

Result from Bali, G.S., Braun, V.M., Bürger, S. *et al. J. High Energ. Phys.* **2019**, 65 (2019).

K* First Moments

our preliminary results: $\langle \xi \rangle = 0.0374(19)$

π Second Moments

Result from Bali, G.S., Braun, V.M., Bürger, S. et al. J. High Energ. Phys. 2019, 65 (2019).

ϕ Second Moments

our preliminary results: $\langle \xi^2 \rangle = 0.2087(73)$

Preliminary Results

	a12m310	a09m310	a06m310	continue
π	0.2349(45)	0.2409(61)	0.2460(66)	0.2494(79)
K	0.2289(31)	0.2342(42)	0.2283(61)	0.2330(66)
	a12m130			
π	0.263(25)			
K	0.249(14)			

	a12m310	a09m310	a06m310	continue
ρ	0.2373(55)	0.2295(53)	0.2078(98)	0.208(10)
K^*	0.2322(46)	0.2292(46)	0.2050(90)	0.2106(88)
ϕ	0.2320(39)	0.2271(39)	0.2062(73)	0.2087(73)
	a12m130			
ρ	0.193(70)			
K^*	0.192(51)			
ϕ	0.181(30)			

 $\xi_2^{\pi} = 0.300(41), \ \xi_2^K = 0.258(32)$

Results from J. Hua et al. (Lattice Parton Collaboration), Phys. Rev. Lett. 129, 132001 (2022).

Except the physical point, the mass dependence of second moments are very small

Summary

- Compute the first moments for the *K* and the second moments for the *K* and π . it is consistent with the previous calculation of RQCD collaboration.
- Compute the first moments for the K^* and the second moments for the ρ , K^* and ϕ .