Collins-Soper kernel with lattice QCD

Artur Avkhadiev¹

PRD 108 (2023) 11, 114505 [2307.12359] PRL 132 (2024) 23, 231901 [2402.06725]

+ ongoing work

in collaboration with Yang Fu¹, Phiala Shanahan¹, Michael Wagman², and Yong Zhao³

Meeting on Lattice Parton Physics from Large Momentum Effective Theory (LaMET) University of Maryland, College Park August 11–14, 2024

The Collins-Soper (CS) kernel

• Related to TMDs (transverse-momentum-dependent distributions); $r_{P_{\star}}$ a generalization of e.g. PDFs:

PDFs $f_{q/h}(x,\mu) \longrightarrow \text{TMD PDFs} \quad f_{q/h}(x,b_T,\mu,\zeta)$

• Describes RG evolution of TMDs along ζ :

$$f_{p/h}(x,b_T,\mu,\zeta)=f_{p/h}(x,b_T,\mu,\zeta_0)\exp\left[rac{1}{2}\gamma_p(b_T,\mu)\lnrac{\zeta}{\zeta_0}
ight],$$

 $x\in [0,1]$

Based on Fig. 1.1 in TMD Handbook, 2304.03302

0

- \Rightarrow Computed as a ratio of TMDs at different ζ :
 - Independent of hadronic state $\gamma_q(b_T,\mu) = rac{2}{\ln(\zeta_1/\zeta_2)} {
 m ln} rac{f_{q/h}(x,b_T,\mu,\zeta_1)}{f_{q/h}(x,b_T,\mu,\zeta_2)}$.
- Non-perturbative at large b_T (for any μ)

Proportional to hadron momentum P

Encoded by light-like matrix elements

 $k_T \sim b_T^{-1}$

 Matched onto space-like matrix elements with LaMET
 ⇒ computable in LQCD

CS kernel: pheno. models and input from LQCD

LQCD results directly comparable with pheno. models Fit CS parameterization to **LQCD data** from 3 lattice spacings

CS kernel from LQCD: outline

Artur Avkhadiev, MIT

5

CS kernel from LQCD: outline

element calculation

Position-space quasi-TMDs

- Compute quasi-TMD wavefunctions (WFs) $\phi_{\Gamma}(b_T, b^z, P^z, \ell)$ $= \langle 0 | \mathcal{O}_{\Gamma}(b_T, b^z, 0, \ell) | \pi(P^z) \rangle$
- Operators $\mathcal{O}_{\Gamma}(b_T, b^z, y, \ell)$ with staple-shaped Wilson lines $\frac{\ell}{2}$
- Separately for each b^z, P^z, bT, ², Dirac (**Г**) structure
- Matrix elements have divergences $\sim \ell + b_T$

 $u(y-\frac{b}{2})$

 $\overline{d}(y+\frac{b}{2})$

 Subtract divergences in quasi-TMD WF ratios

 $W^{(0)}_\Gamma(b_T,b^z,P^z,\ell)=rac{\phi_\Gamma(b_T,b^z,P^z,\ell)}{ ilde{\phi}_{\gamma^4\gamma^5}(b_T,0,0,\ell)}$

7

Position-space quasi-TMD WFs

 Mixing effects included via RIxMOM scheme

$$egin{aligned} W^{ ext{MS}}_{\Gamma}(b_T,\mu,b^z,P^z,\ell) & \colon \ &= \sum_{\Gamma'} Z^{\overline{ ext{MS}}}_{\Gamma\Gamma'}(\mu) \, W^{(0)}_{\Gamma}(b_T,b^z,P^z,\ell) \ & \Gamma \in \{\gamma_4\gamma_5,\gamma_3\gamma_5\} \end{aligned}$$

- Shown for bT = 0.48 fm,
 Pz = 1.29 GeV
- Consistent between different staple lengths *l*.
- Decay to zero within computed bz ranges.

without mixing

 $\square \quad \ell/a = 17 \quad \bigcirc \quad \ell/a = 20$

 $b^z P^z$

 $\square \quad \ell/a = 17 \quad \bigcirc \quad \ell/a = 20$

 $b^z P^z$

a = 0.12 fm

a = 0.12 fm

10

15

 $b_T = 0.48 \text{ fm}, \ n^z = 6$

Real part

Imaginary part

-5

 $, P^{z}, \ell)$

Re $\left[W^{(0)}_{\gamma_4 \gamma_5}(b_T, b^z) \right]$

 $\operatorname{Im}\left[W^{(0)}_{\gamma_{4}\gamma_{5}}(b_{T},b^{z},P^{z},\ell)\right]$

Position-space quasi-TMD WFs at 3 lattice spacings

Momentum-space quasi-TMDs

- Have support outside $x \in [0, 1]$, as expected.
- Converge to physical range $x \in [0,1]$ with increasing $P^z = \frac{2\pi}{L}n^z$.

x

Artur Avkhadiev, MIT

x

CS kernel estimate

$$egin{aligned} &\hat{\gamma}_{\Gamma}^{\overline{ ext{MS}}}(b_T,x,P_1^z,P_2^z,\mu) \ &= rac{1}{\ln(P_1^z/P_2^z)} \ln\left[rac{W_{\Gamma}^{\overline{ ext{MS}}}(b_T,x,P_1^z,\ell)}{W_{\Gamma}^{\overline{ ext{MS}}}(b_T,x,P_2^z,\ell)}
ight] \ &+ \delta \gamma_q^{\overline{ ext{MS}}}(x,P_1^z,P_2^z,\mu) \end{aligned}$$

 Separate for each momentum pair, bT, Dirac / Γ, and matching.

> X. Ji et. al., Phys. Lett. B 811 [1911.03840] X. Ji and Y. Liu, PRD 105, [2106.05310] Z.-F. Deng et. al, JHEP 09, [2207.07280]

• Differ by power corrections:

$$\mathcal{O}\left(rac{1}{(xP^zb_T)^2},rac{m_\pi^2}{(xP^z)^2}
ight)+(x\leftrightarrow 1-x)$$

 Corrections ~P1^z, ~P2^z partially cancel in ratios — insufficient precision to fit & subtract power corrections

Artur Avkhadiev, MIT

Fit each estimator separately to a constant in $x \in [0.3, 0.7]$, then average fits at fixed bT and matching accuracy.

11

Weighted averages account for power corrections

Study of LaMET matching using **Re+Im** parts of CS kernel estimate

- The CS kernel is real-valued.
- The CS kernel *estimate* has a **nonzero imaginary part** due to
 - poor perturbative convergence of Ο matching coefficients
 - bT power corrections Ο

\Rightarrow not treated as an independent systematic

M.-H. Chu et al. (LPC), PRD 106, 034509, [2204.00200] M.-H. Chu et al. (LPC), [2302.09961] M.-H. Chu et al. (LPC), [2306.06488]

Re+Im parts used to characterize matching

Artur Avkhadiev, MIT

13

Why bT-unexpanded matching

(**Power corrections** break down $(xP^zb_T)^2$ TMD factorization at small bT)

$$\mathbf{C}_{\phi}(p^z,b_T,\mu) = C_{\phi}(p^z,\mu) + rac{\delta C_{\phi}(p^z,b_T)}{p^z \in xP^z, ar{x}P^z}$$

 $\delta C_{\phi}(p^{z}, b_{T})$ contains bT-dependent terms on $x \in (-\infty, \infty)$ suppressed in $P^z b_T$

2. Im part:

uNLC

M. A. Ebert et. al,, JHEP 09, 037, [1901.03685] Z.-F. Deng et. al, JHEP 09, [2207.07280]

- Reduced by bT-unexpanded Ο matching at small bT.
- Still nonzero at large bT: Ο
 - even for LO (= no matching)
 - esp. for resummed logs (*LL)

However: no impact on the real part

⇒ no impact on CS kernel estimate explained by IR renormalon (next slide) Artur Avkhadiev, MIT

Leading infrared renormalon

• Asymptotic series in matching coefficient

 $R(p^z,\mu) = i N_m rac{\mu}{p^z} \sum_{n=0}^{\infty} rac{eta_0^n}{p^{a}} lpha_s^{n+1}(\mu) n!$ = 0.552 for 4 flavors $p^z \in xP^z, ar{x}P^z$

- Leads to slow perturbative convergence in the imaginary part of CS kernel. Y. Liu, Y. Su (LPC), JHEP02(204), [2311.06907]
- Leading renormalon resummation (LRR):

 $C^{
m LRR}(p^z,\mu) = C(p^z,\mu) - R(p^z,\mu) {+} \mathcal{O}\left(rac{\Lambda_{
m QCD}}{n^z}
ight)$

- Suppresses remaining p.c. at large
 bT in the imaginary part for uNNLL
- Not expected to work at small bT (IR effect)
- → no unexplained systematics in uNNLL

 Final determination: uNNLL = uNLO + resummation

 Artur Avkhadiev, MIT

CS kernel parameterization and continuum extrapolation

- Pheno params + Discretization effects modeled together:
- best fit $b_T b^* \left[c_0 + c_1 \ln rac{b^+}{B_{
 m NP}}
 ight]$ $\mathcal{L} = -2 \left[{\mathcal{D}_{ ext{pert.}}}(b^*\!,\mu) + {\mathcal{D}_{ ext{NP}}}(b_T,b^*; \widehat{B}_{ ext{NP}},\{c_i\})
 ight] \!+\! k_1 rac{a}{b\pi} + k_2 rac{a}{b\pi}$
- Fits to different **NP models** consistent, directly comparable with params from pheno. results.
- **Discretization effects:**

 $\gamma_q^{ ext{param.}}(b_T,\mu; oldsymbol{B_{ ext{NP}}}, \{oldsymbol{c}_i\}, oldsymbol{a})$

- $c_0 = 0.032(12),$ Fix subsets of params to ref. values $k_1 = 0.22(8),$
- **Optimize** others
- $c_1=0,\,B_{
 m NP}=2\,{
 m GeV}$ Use AIC to pick **best fit** (Akaike Information Criterion) $k_2 = 0$

~10-30% range as NP models are varied

Summary and outlook

- **Systematic control** over quark mass, operator mixing, and discretization effects
- Sufficiently precise to discriminate between some pheno models
- Still not fitting power corrections, using weighted averages
- Improvements expected from
 - Coulomb Gauge fixing for stapleless calculations
 - bT-dependent matching, incl. in collinear factorization limit

X. Gao(Argonne), W-Y. Liu, Y. Zhao, PRD109 (2024) [2306.14960]
Y. Zhao [2311.01391]
Bollweg, X. Gao, Mukherjee, Y. Zhao, PLB 852 (2024) [2403.00664]
Talks: Tue Y. Zhao [9.20 am], X. Gao [9.50 am]
Wed Y.B. Yang [8.30 am], J. He [9.00 am]

Calculations of quark vs. gluon CS kernel differ by operator and matrix element, otherwise analogous

Gluon calculation will require ~30x stats of the quark project

Position space MEs

- Quark ME has non-zero imaginary part
- part
 Gluon ME real, and exactly bz-symmetric after averaging +/- bT

Fourier-transformed MEs

- Quark ME symmetric r = 0 wrt x $\rightarrow 1-x$
- Gluon ME symmetric wrt x → -x, power corrections still most suppressed around |x| ~ 0.5

Unsubtracted quasi-TMD WFs: examples

- Extracted from correlation functions $\sum_{\mathbf{y}} e^{i\mathbf{P}\cdot\mathbf{y}} \left\langle \mathcal{O}_{\Gamma}(b_{T}, b^{z}, y, \ell) \chi_{\mathbf{P}}^{\dagger}(0) \right\rangle$ $\xrightarrow{t \gg 0} \frac{Z_{\pi}^{S}(\mathbf{P})}{2E_{\pi}(\mathbf{P})} \tilde{\phi}_{\Gamma}(b_{T}, b^{z}, \mathbf{P}, \ell) e^{-E_{\pi}(\mathbf{P})t}$
- Momentum-smeared interpolators $\chi^{\dagger}_{\mathbf{P}}$
- $E_{\pi}(\mathbf{P})$ and $Z_{\pi}^{S}(\mathbf{P})$ fit and cancelled in ratios $\mathcal{R}^{\Gamma}(t, b_{T}, b^{z}, P^{z}, \ell)$:
- Plateau gives $ilde{\phi}_{\Gamma}(b_T,b^z,\mathbf{P},\ell)$.
- Repeated for each P^z , b_T , b^z , ℓ .

 $[GeV^2]$ Re -Im -0.006-0.008 $\mathcal{R}^{\gamma_4\gamma_5}(t, b_T, b^z, P^z, P^z,$ $b_T = 0.12 \text{ fm}, \ n^z = 4$ -0.010 $b^z = 0.24$ fm. $\ell = 3.12$ fm -0.012-0.0140.21.01.2 0.00.40.6 0.8 $t \, [\mathrm{fm}]$

- A range of time windows chosen systematically
- -Covariance matrix from bootstrap + linear shrinkage
- -Correlated determinations between staple geometries
- -AIC-preferred fits (1 + 2 state)
- Further selection cuts + combine in weighted average

TMD WFs in position space

Statistical noise makes computation challenging for large P^{z} , ℓ , and b_{T}

MEs with all 16 Dirac structures calculated

 $a = 0.09 \text{ fm}, b_T = 0.36 \text{ fm}, P^z = 1.3 \text{ GeV}$

Mixing effects quantified with RIxMOM

• Calculation of mixing effects in RIxMOM independent of staple geometry.

 $W^{\overline{ ext{MS}}}_{\Gamma}(b_T,\mu,b^z,P^z,\ell) = \sum_{\Gamma\Gamma'} Z^{\overline{ ext{MS}}}_{\Gamma\Gamma'}(\mu) \, W^{(0)}_{\Gamma}(b_T,b^z,P^z,\ell)$

• Full 16x16 mixing matrix computed

$$egin{aligned} \mathcal{M}^{\mathrm{RI/xMOM}}_{\Gamma\Gamma'}(p_{\mathrm{R}},\,\xi_{\mathrm{R}},a) \ &\equiv rac{\mathrm{Abs}[Z^{\mathrm{RI/xMOM}}_{\Gamma\Gamma'}(p_{\mathrm{R}},\xi_{\mathrm{R}},a)]}{rac{1}{16}\sum_{\Gamma}\mathrm{Abs}[Z^{\mathrm{RI/xMOM}}_{\Gamma\Gamma}(p_{\mathrm{R}},\xi_{\mathrm{R}},a)]} \end{aligned}$$

• Dominant mixings consistent with lattice perturbation theory at 1-loop.*

X. Ji, et. al, PRL 120 (2018), [1706.08962]*M. Constantinou et al., PRD 99 (2019), [1901.03862]J. Green et. al, PRL 121 (2018), [1707.07152]Y. Ji et. al., PRD 104 (2021), [2104.13345]J. Green et. al, PRD 101 (2020), [2002.09408]C. Alexandrou et al., [2305.11824]

Mixing reduced at finer lattice spacings, as expected

Scheme dependence of mixing patterns

TMD WFs in momentum space

bz range sufficient to use a Discrete Fourier Transform

$$ar{W}_{\Gamma}^{\overline{ ext{MS}}}(b_T,\mu,x,P^z) = rac{P^z}{2\pi} N_{\Gamma}(P) \sum_{|b_z| \leq b_z^{ ext{max}}} e^{i(x-rac{1}{2})P^z b^z} ar{W}_{\Gamma}^{\overline{ ext{MS}}}(b_T,\mu,b^z,P^z)$$

Normalization factor to compare betwee Dirac structures

The DFT is stable to decreasing the range in b_T^{\max} :

TMD WFs in momentum space

$$\begin{split} \gamma_{q}(\mu, b_{\mathrm{T}}) = & \lim_{a \to 0} \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \left[\frac{\int \mathrm{d}b^{z} e^{ib^{z}xP_{1}^{z}} P_{1}^{z} \sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu, a) \lim_{\ell \to \infty} W_{\mathcal{O}}^{\Gamma'}(b^{z}, b_{\mathrm{T}}, \ell, P_{1}^{z}, a)}{\int \mathrm{d}b^{z} e^{ib^{z}xP_{2}^{z}} P_{2}^{z} \sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu, a) \lim_{\ell \to \infty} W_{\mathcal{O}}^{\Gamma'}(b^{z}, b_{\mathrm{T}}, \ell, P_{2}^{z}, a)} \\ + \delta\gamma_{q}(\mu, b_{\mathrm{T}}, P_{1}^{z}, P_{2}^{z}) + \mathcal{O}\left(\frac{1}{(xP^{z}b_{\mathrm{T}})^{2}}, \frac{M^{2}}{(xP^{z})^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{(xP^{z})^{2}}\right) \end{split}$$

See convergence to the physical range $x \in [0,1]$ with increasing $P^z = rac{2\pi}{L}n^z$

TMD WFs in momentum space

$$\begin{split} \gamma_{q}(\mu, b_{\mathrm{T}}) = & \lim_{a \to 0} \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \left[\frac{\int \mathrm{d}b^{z} e^{ib^{z}xP_{1}^{z}} P_{1}^{z} \sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu, a) \lim_{\ell \to \infty} W_{\mathcal{O}}^{\Gamma'}(b^{z}, b_{\mathrm{T}}, \ell, P_{1}^{z}, a)}{\int \mathrm{d}b^{z} e^{ib^{z}xP_{2}^{z}} P_{2}^{z} \sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu, a) \lim_{\ell \to \infty} W_{\mathcal{O}}^{\Gamma'}(b^{z}, b_{\mathrm{T}}, \ell, P_{2}^{z}, a)} \\ + \delta\gamma_{q}(\mu, b_{\mathrm{T}}, P_{1}^{z}, P_{2}^{z}) + \mathcal{O}\left(\frac{1}{(xP^{z}b_{\mathrm{T}})^{2}}, \frac{M^{2}}{(xP^{z})^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{(xP^{z})^{2}}\right) \end{split}$$

See convergence to the physical range $\,x\in[0,1]\,$ with increasing $\,P^z=rac{2\pi}{L}n^z$

NLO, NNLO, and resummations

The correction is given by coefficients
$$\delta\gamma_q(x,P_1^z,P_2^z,\mu)\equiv rac{1}{\ln(P_1^z/P_2^z)}\left(\lnrac{C_\phi(xP_2^z,\mu)}{C_\phi(xP_1^z,\mu)}+(x\leftrightarrowar x)
ight)$$

 $C_{\phi}(p^z,\mu)~$ appear in the TMD WF matching formula and are computed perturbatively as

$$C_{\phi}(p^{z},\mu) = 1 + \sum_{n=1}^{} igg(rac{lpha_{s}(\mu)}{4\pi}igg)^{\!\!n} C_{\phi}^{(n)}(p^{z},\mu) \, ,$$

at LO, NLO and recently at NNLO, and resummed as

O. del Río and A. Vladimirov, [2304.14440] X. Ji et. al, [2305.04416]

Resummation kernel

$$egin{aligned} C_{\phi}(p^z\!,\mu) &= C_{\phi}(p^z,2p^z) \ imes \exp[K_{\phi}(p^z,2p^z)] \end{aligned}$$

NLL and NNLL

Resummation kernel is $K_{\phi}(2p^z,\mu)=2K_{\Gamma}(2p^z,\mu)-K_{\gamma_{\mu}}(2p^z,\mu)-i\pi\eta(2p^z,\mu)$

$$egin{aligned} K_{\gamma_{\mu}}(\mu_{0},\mu) &= \int_{lpha_{s}(\mu_{0})}^{lpha_{s}(\mu)} rac{\mathrm{d}lpha_{s}}{eta(lpha_{s})} \gamma_{\mu}\left(lpha_{s}
ight), \ K_{\Gamma}(\mu_{0},\mu) &= \int_{lpha_{s}(\mu_{0})}^{lpha_{s}(\mu)} rac{\mathrm{d}lpha_{s}}{eta(lpha_{s})} \Gamma_{\mathrm{cusp}}(lpha_{s}) \int_{lpha_{s}(\mu_{0})}^{lpha_{s}} rac{\mathrm{d}lpha'_{s}}{eta(lpha'_{s})}, \ \eta_{\Gamma}(\mu_{0},\mu) &= \int_{lpha_{s}(\mu_{0})}^{lpha_{s}(\mu)} rac{\mathrm{d}lpha_{s}}{eta(lpha_{s})} \Gamma_{\mathrm{cusp}}(lpha_{s}) \end{aligned}$$

where
$$\Gamma_{
m cusp}(lpha_s(\mu)) = rac{{
m d}\gamma_\mu\,(p^z,\mu)}{{
m d}\ln p^z}$$
 and $\gamma_\mu(p^z,\mu) \equiv rac{{
m d}\ln C_\phi(p^z,\mu)}{{
m d}\ln \mu}$

are computed perturbatively at following loop orders for each resummation accuracy:

	K_{Γ}	K_{γ_C}	$K_{\gamma_{\mu}}$	$ \eta $	C_{ϕ}
NLL	2	1	1	1	0
NNLL	3	2	2	2	1

x

NLL (solid) and NNLL (dashed) **No convergence in the imaginary part**

bT-dependent matching

Matching coefficients C include are a $P^z b_T \gg 1$ limit of ______

$$\mathbf{C}_{\phi}(p^z,b_T,\mu) = C_{\phi}(p^z,\mu) + \delta C_{\phi}(p^z,b_T) \int_{\mathbf{C}_{\phi}}^{\mathbf{C}_{\phi}(p^z,b_T,\mu)} e^{z} e^{-x\mathbf{P}^z - \bar{x}\mathbf{P}^z} e^{-x\mathbf{P}^z - \bar{x}\mathbf{P}^z}$$

uNLO

- $\delta C_{\phi}(p^z,b_T)$ contains bT-dependent terms on $x\in(-\infty,\infty)$ suppressed in P^zb_T
- Has been computed at NLO.
- Corresponding unexpanded (in bT) matching correction reveals power corrections in 1/Pz bT. M. A. Ebert et. al,, JHEP 09, 037, [1901.03685] Z.-F. Deng et. al, JHEP 09, [2207.07280]
- Imaginary part more sensitive to power corrections => <u>not taken as a systematic</u> <u>uncertainty directly.</u>

M.-H. Chu et al. (LPC), PRD 106, 034509, [2204.00200] M.-H. Chu et al. (LPC), [2302.09961] M.-H. Chu et al. (LPC), [2306.06488] Dashed: **uNLO**, solid: NLO.

Power corrections expected to decrease with higher-order LaMET matching

- Matching applied before weighted averaging to ratios of MEs for each bT, Pz pair, Dirac (Γ) structure, and a
- Final results use b_T-unexpanded, next-to-next-to-leading log (**uNNLL**) matching with leading renormalon subtraction

 $_{\Gamma_{T}} Z_{\Gamma\Gamma'}(\mu) \lim W_{\Gamma'}(b^z, b_{\mathrm{T}}, \ell, P_{\mathrm{T}})$

 $\gamma_q(b_T, \mu)$

Artur Avkhadiev, MIT (Calculation of gluon CS kernel will have ~same steps, only a different ME of staple-shaped op.) 34

Summary and Outlook

Quark CS kernel — completed

- **Systematic control** over quark mass, operator mixing, and discretization effects
- Sufficiently precise to discriminate between some pheno models from global analyses
- Still not fitting power corrections, using weighted averages
- Improvements expected from Coulomb Gauge fixing, bT-dependent matching

Gluon CS kernel — ongoing

- Need ~**30x more stats** than in quark project
- No global analysis results yet, but expected with EIC data — lattice QCD + LaMET will provide a prediction

