Non-perturbative Collins-Soper kernel from a Coulomb-gauge-fixed quasi-TMD

LaMET 2024 @ University of Maryland Aug 11 – 14, 2024

Xiang Gao **Argonne National Laboratory**

2 Transverse-momentum-dependent distributions

- Nucleon spin structure: Spin-orbit correlations.
- QCD input for particle physics (e.g., m_W).

• 3D image: longitudinal momentum fraction x and confined motion k_T .

TMDs from global analyses of experimental data 3

Semi-Inclusive DIS

 $\sigma \sim f_{q/P}(x, k_T) D_{h/q}(x, k_T) \quad \sigma \sim f_{q/P}(x, k_T) f_{q/P}(x, k_T) \quad \sigma \sim D_{h_1/q}(x, k_T) D_{h_2/q}(x, k_T)$

 $\frac{d\sigma_{\rm DY}}{dQdYdq_T^2} = \frac{H(Q,\mu)}{\int} d^2 \vec{b}_T e^{i\vec{q}_T \cdot \vec{b}_T} f_q$

Perturbative hard kernels

Drell-Yan Dihadron in e+e-

$$\left[(x_a, \vec{b}_T, \mu, \zeta_a) f_q(x_b, \vec{b}_T, \mu, \zeta_b) [1 + \mathcal{O}(\frac{q_T^2}{Q^2})] \right]$$

Nonperturbative **TMDs**

 $q_T^2 \ll Q^2$

TMDs from global analyses of experimental data

• V. Moos, et. al. (ART23), JHEP 05 (2024) 036

• Relate TMDs at different energy scales

$$\mu \frac{d}{d\mu} \ln f_q(x, \vec{b}_T, \mu, \zeta) = \gamma_{\mu}^q(\mu, \zeta)$$
$$\zeta \frac{d}{d\zeta} \ln f_q(x, \vec{b}_T, \mu, \zeta) = \gamma_{\zeta}^q(\mu, b_T)$$

Collins-Soper kernel

Determination of TMDs 5

• Global analysis of experimental data.

Determination of TMDs 6

- Complementary knowledge from

7 The definition of TMDs

 $f_q(x, \vec{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{UV}}(\epsilon, \mu, \zeta) \lim_{\tau \to 0} \frac{B_q(x, \vec{b}_T, \epsilon, \tau, \zeta)}{\sqrt{S_q(\vec{b}_T, \epsilon, \tau)}}$ UV regulator Rapidity regulator $\sqrt{S_q(\vec{b}_T, \epsilon, \tau)}$ Soft function

Beam function

$$\langle P | \overline{\psi}(\frac{b^+}{2}, b_\perp) \Gamma W_{\exists^+} \psi(-\frac{b^+}{2}, 0) | P \rangle$$

Light-cone correlations: forbidden on Euclidean lattice

TMDs from lattice: quasi TMDs Quasi-TMDs from equal-time correlators: Computable from Lattice QCD.

• Have same IR physics as light-cone TMDs.

- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- A. Vladimirov, A. Schäfer Phys.Rev.D 101 (2020), 074517
- I. Stewart, Y. Zhao et al., JHEP 09 (2020) 099
- X. Ji et al., Phys.Rev.D 103 (2021) 7, 074005
- I. Stewart, Y. Zhao et al., JHEP 08 (2022) 084

b_T $P_{z} \rightarrow \infty$ Light-cone TMD b^+ $\langle P | \overline{\psi}(\frac{b^+}{2}, b_\perp) \Gamma W_{\exists^+} \psi(-\frac{b^+}{2}, 0) | P \rangle$

); ,074517

D Large P_7 expansion and perturbative matching

Quasi beam function **Collins-Soper kernel** $\frac{\tilde{\phi}(x, \tilde{b}_T, \mu, P_z)}{\sqrt{1-\gamma}} = C(\mu, x P_z) e^{\frac{1}{2}\gamma_{\zeta}(\mu, \ell)}$ $\sqrt{S_r(\vec{b}_T,\mu)}$

Reduced soft factor

- $P_{7} \rightarrow \infty$ limit.
- limit, inducing a perturbative matching $C(\mu, xP_{\gamma})$.

$$b_T \ln \frac{(2xP_z)^2}{\zeta} f(x, \vec{b}_T, \mu, \zeta) \{1 + \mathcal{O}[\frac{1}{(xP_z b_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(xP_z)^2}, \frac{\Lambda_{\text{QCD}}^2}{(xP_z)^2}\}$$
Physical TMD

• Quasi TMDs: first regularize QCD on a lattice (a or $\epsilon \to 0$), then take the

• Differ from the Collins scheme by order of $y_B \to -\infty$ (rapidity) and $\epsilon \to 0$

 $\left.\right]$

The Collins-Soper kernel from quasi-TMDs

Collins-Soper kernel

Wilson clover fermion, physical quark masses, a = 0.09, 0.12, 0.15 fm

Quasi-TMDWF

$$\gamma_{\zeta}(\mu, b_T) = \frac{d}{d \ln P_z} \ln \frac{\tilde{f}(x, \tilde{b}_T, \mu, P_z)}{C(\mu, x P_z)}$$

- Three different lattice spacing, physical pion mass.
- Controlled renormalization and Fourier transform.
- Next-to-next-to-leading logarithmic (NNLL) order.

• A. Avkhadiev, P. Shanahan, M. Wagman, Y. Zhao, PRL 132 (2024) 23, 231901

The Collins-Soper kernel from quasi-TMDs

Collins-Soper kernel

Experimental constrain at deep nonperturbative region is very limited: lack of data, model dependence ...

• Can lattice QCD push further?

• A. Avkhadiev, P. Shanahan, M. Wagman, Y. Zhao, PRL 132 (2024) 23, 231901

The Collins-Soper kernel from quasi-TMDs

1.0

Collins-Soper kernel

Experimental constrain at deep nonperturbative region is very limited: lack of data, model dependence ...

• Can lattice QCD push further?

Very difficult: errors grow rapidly!

• A. Avkhadiev, P. Shanahan, M. Wagman, Y. Zhao, PRL 132 (2024) 23, 231901

Difficulties in the conventional quasi-TMDs

 Exponential decaying signal and complicated renormalization due to the Wilson line artifacts.

Linear divergence from Wilson line self energy

Bare matrix elements

0.2

.0

 b_T [fm]

0.6

0.8

0.4

Overcoming difficulties

Light-cone TMD

Overcoming difficulties: Coulomb-gauge qTMDs

Quasi-TMD in physical gauge

TMD in light gauge $A^+ = 0$

• Y. Zhao, arXiv: 2311.01391

Overcoming difficulties: Coulomb-gauge qTMDs

Quasi-TMD in physical gauge

TMD in light gauge $A^+ = 0$

• XG, W.-Y. Liu, Y. Zhao, PRD 109 (2024) 9, 094506

• Y. Zhao, arXiv: 2311.01391

CG quasi-TMDs without Wilson lines

 $\frac{\tilde{f}_C(x, \tilde{b}_T, \mu, P_z)}{\sqrt{S_C(\tilde{b}_T, \mu)}} = C(\mu, x P_z) e^{\frac{1}{2}\gamma_\zeta(\mu, b_T) \ln \frac{1}{2}}$

- (GI) case: verified through SCET.
- **IR pole cancels** in the one-loop calculation, differ only by UV:

$$\tilde{f}_{C}^{(1)}(x,\vec{b}_{T},\mu,P_{z},\epsilon_{\mathrm{IR}}) - \tilde{f}^{(1)}(x,\vec{b}_{T},\mu,\epsilon_{\mathrm{IR}}) = -\frac{\alpha_{s}(\mu)C_{F}}{2\pi} \left[\frac{1}{2}\ln^{2}\frac{\mu^{2}}{4P_{z}^{2}} + 3\ln\frac{\mu^{2}}{4p_{z}^{2}} + 12 - \frac{7\pi^{2}}{12}\right]$$

in large P_{τ} limit but with differently: power correction and $C(\mu, xP_{\tau})$.

$$\frac{(2xP_z)^2}{\zeta} f(x, \vec{b}_T, \mu, \zeta) \{1 + \mathcal{O}[\frac{1}{(xP_z b_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(xP_z)^2}]\}$$

• Y. Zhao, arXiv: 2311.01391 • Y.-Z. Liu, Y.-S. Su., JHEP 02 (2024) 204

• The same form of factorization formula as the conventional gauge invariant

Both CG and GI quasi-TMDs fall into the same universality class of LaMET

CG quasi-TMDs without Wilson lines

 $\frac{\tilde{f}_{C}(x, \tilde{b}_{T}, \mu, P_{z})}{\sqrt{S_{C}(\tilde{b}_{T}, \mu)}} = C(\mu, xP_{z})e^{\frac{1}{2}\gamma_{\zeta}(\mu, b_{T})\ln\frac{(2xP_{z})^{2}}{\zeta}}f(x, \tilde{b}_{T}, \mu, \zeta)\{1 + \mathcal{O}[\frac{1}{(xP_{z}b_{T})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{(xP_{z})^{2}}]\}$

- Gribov copies in the non-perturbative Coulomb gauge fixing?
- Complexity from Wilson line disappear?
- Power corrections under control?

- Y. Zhao, arXiv: 2311.01391
- Y.-Z. Liu, Y.-S. Su., JHEP 02 (2024) 204

see Jinchen He's talk

Quasi-TMDs in the Coulomb gauge

 $\langle \Omega | \overline{\psi}(\frac{b_z}{2}, b_\perp) \Gamma W_{\exists z} \psi(-\frac{b_z}{2}, 0) | \pi^+, P_z \rangle$

Gauge-invariant (GI) quasi-TMDWF

 $\langle \Omega | \overline{\psi}(\frac{b_z}{2}, b_\perp) \Gamma \psi(-\frac{b_z}{2}, 0) |_{\overrightarrow{\nabla} \cdot \overrightarrow{A} = 0} | \pi^+, P_z \rangle$

Coulomb gauge (CG) quasi-TMDWF

20 CG quasi-TMDs: simplified renormalization

Renormalized matrix elements

 No linear divergence: the renormalization is an overall constant.

$$[\bar{\psi}(-\frac{\vec{b}}{2})\Gamma\psi(\frac{\vec{b}}{2})]_B = Z_{\psi}(a)[\bar{\psi}(-\frac{\vec{b}}{2})\Gamma\psi(\frac{\vec{b}}{2})]_B$$

• Matrix elements with any \vec{b} can be used to remove the UV divergence.

$$\frac{\tilde{h}^{B}(b_{T}, b_{z}, a)}{\tilde{h}^{B}(b_{T}^{0}, \boldsymbol{b}_{z}^{0}, a)} = \frac{\tilde{h}^{R}(b_{T}, b_{z}, \mu)}{\tilde{h}^{R}(b_{T}^{0}, \boldsymbol{b}_{z}^{0}, \mu)}$$

• XG, W.-Y. Liu, Y. Zhao, PRD 109 (2024) 9, 094506

2 CG quasi-TMDs: enhanced long-range precision

Domain wall fermion, physical quark masses $64^3 \times 128$, a = 0.084 fm

• D. Bollweg, XG, S. Mukherjee, Y. Zhao, PLB 852 (2024) 138617

Renormalized matrix elements

Domain wall fermion, physical quark masses $64^3 \times 128$, a = 0.084 fm

22 CG quasi-TMDs: enhanced long-range precision

CG shows much slower signal decay

• D. Bollweg, XG, S. Mukherjee, Y. Zhao, PLB 852 (2024) 138617

23 Quasi-TMD wave functions after F.T.

The CG quasi-TMD wave functions are more stable and show better signal.

The Collins-Soper kernel from CG quasi-TMDWF 24 Perturbative correction $\frac{\mu}{\mu} \left| + \delta \gamma^{\overline{\text{MS}}}(x, \mu, P_1, P_2) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{(xP_z)^2}, \frac{1}{(b_{\perp}(xP_z))^2}\right) \right|$

$$\gamma^{\overline{\mathrm{MS}}}(b_{\perp},\mu) = \frac{1}{\ln(P_2/P_1)} \ln \left[\frac{\tilde{\phi}(x,b_{\perp},P_2,\mu)}{\tilde{\phi}(x,b_{\perp},P_1,\mu)} \right]$$

Ratio of quasi-TMDWFs

• The CS kernel $\gamma^{MS}(b_{\perp},\mu)$ is **independent** (universal) of P_z and x, up to higher-order and power corrections.

The CS kernel from NLL matching 25

- Small $b_T \sim 0.1$ fm: visible P_7 dependence.
- Sizable power corrections.

 $a = 0.084 \text{ fm}, \quad P_z = n_z \cdot 0.23 \text{ GeV}$

- Large b_T : no x and P_z dependence.
- Perturbative factorization work well!

Nonperturbative Collins-Soper kernel 26

• D. Bollweg, XG, S. Mukherjee, Y. Zhao, PLB 852 (2024) 138617

Domain wall fermion, physical quark masses $64^3 \times 128$, a = 0.084 fm

Nonperturbative Collins-Soper kernel 27

• D. Bollweg, XG, S. Mukherjee, Y. Zhao, PLB 852 (2024) 138617

Summary

- The TMDs can be extracted from quasi-TMD correlators. The novel CG quasi-TMDs have the advantages of the simplified renormalization and enhanced long-range precision.
- We extracted the non-perturbative CS kernel from the quasi-TMD wave functions in the CG which appears to be consistent with recent parametrization of experimental data.
- The CG methods could have broader use in the future particularly in the non-perturbative regime of TMD physics, including the gluons and the Wigner distributions.

Thanks for your attention!

Back up

CG quasi distribution without Wilson lines

The quark field in the Coulomb gauge

$$\psi_C(z) = U_C(z)\psi(z)$$

satisfying,

$$\overrightarrow{\nabla} \cdot \left[U_C \overrightarrow{A} U_C^{-1} + \frac{i}{g} U_C \overrightarrow{\nabla} U_C^{-1} \right] = 0$$

order by order in g, the solution:

$$U_{C} = \sum_{n=0}^{\infty} \frac{(ig)^{n}}{n!} \omega_{n}$$
$$\omega_{1} = -\frac{1}{\nabla^{2}} \overrightarrow{\nabla} \cdot \overrightarrow{A},$$
$$\omega_{2} = \frac{1}{\nabla^{2}} \left(\overrightarrow{\nabla} \cdot (\omega_{1}^{\dagger} \overrightarrow{\nabla} \omega_{1}) - [\overrightarrow{\nabla} \omega_{1}, \overrightarrow{A}] \right)$$
...

$\blacktriangleright P \rightarrow \infty \text{ limit boost}$

$$\frac{\partial}{\partial \nabla^{2}} \vec{\nabla} \cdot \vec{A} = i \int \frac{d^{4}k}{(2\pi)^{4}} e^{-ik \cdot z} \frac{1}{k_{z}^{2} + k_{\perp}^{2}} [k_{z}A_{z}(k) + k_{\perp}A_{\perp}(k)]$$

$$\approx i \int \frac{d^{4}k}{(2\pi)^{4}} e^{-ik \cdot z} \frac{k^{+}}{(k^{+})^{2} + \epsilon^{2}} A^{+}(k)$$

$$= \frac{1}{2} \left[\int_{-\infty^{-}}^{z^{-}} + \int_{+\infty^{-}}^{z^{-}} \right] d\eta^{-}A^{+} \equiv \frac{1}{\partial_{p,V}^{+}} A^{+}(z)$$

Principle value prescription (P.V.) averaging over past and future. Path-ordered integral

$$\frac{\omega_n}{n!} \to \left(\dots \left(\frac{1}{\partial_{\text{P.V.}}^+} \left(\left(\frac{1}{\partial_{\text{P.V.}}^+} A^+ \right) A^+ \right) A^+ \right) \dots A^+ \right)$$
$$U_C \to \mathscr{P} \exp\left[-ig \int_{z^-}^{\pm \infty^-} dz A^+(z) \right] \equiv W(z^-, \pm \infty^-)$$

Infinite light-cone Wilson link

Conventional quasi-TMDs

