

Lanczos for spectroscopy

Michael Wagman (FNAL)

Dan Hackett (FNAL)

1

LaMET 2024 Aug 13, 2024 University of Maryland

Boosted states are noisy

Avkhadiev, Shanahan, MW, Zhao, PRL 132 (2024)

Outline

• Spectroscopy and the transfer matrix

Lanczos spectroscopy algorithm

• "Spurious eigenvalues"

• Proof-of-principle demonstrations

Outline

Spectroscopy and the transfer matrix

Lanczos spectroscopy algorithm

• "Spurious eigenvalues"

• Proof-of-principle demonstrations

Spectroscopy = finding eigenvalues

Lattice theories do not have continuous time translation symmetry defining Hamiltonian

$$\mathcal{O}(t) = e^{-Ht} \mathcal{O}e^{Ht}$$

Discrete time translation symmetry enables definition of transfer matrix T

$$\mathcal{O}(ka) = T^k \mathcal{O}(T^{-1})^k$$

Energy spectrum = - In (spectrum of eigenvalues of T)

$$T|n\rangle = |n\rangle\lambda_n$$
 $E_n = -\ln\lambda_n$

Correlation functions are matrix elements of powers of T

$$C(t) \equiv \left\langle \psi(t)\psi^{\dagger}(0) \right\rangle = \left\langle \psi \right| T^{t/a} \left| \psi \right\rangle + \dots$$

Hilbert space & the Schrodinger picture

Interpolator excites the starting state

$$\bar{\psi} |\Omega\rangle = |\psi\rangle = \sum_{k} \langle k |\psi\rangle |k\rangle \equiv \sum_{k} Z_{k} |k\rangle$$

Hermitian transfer matrix

$$T = T^{\dagger} = \sum_{k} |k\rangle \, \lambda_{k} \, \langle k$$

where $\lambda_{k} = e^{-E_{k}t}$

Euclidean time evolution

$$T^{t}|\psi\rangle = \sum_{k} Z_{k} e^{-E_{k}t}|k\rangle$$

$$\rightarrow Z_{0}e^{-E_{0}t}|0\rangle + (ESC)$$

Hilbert space & the Schrodinger picture

Interpolator excites the starting state

$$\overline{\psi} |\Omega\rangle = |\psi\rangle = \sum_{k} \langle k |\psi\rangle |k\rangle \equiv \sum_{k} Z_{k} |k\rangle$$

Hermitian transfer matrix

$$T = T^{\dagger} = \sum_{k} |k\rangle \, \lambda_k \, \langle k$$
 where $\lambda_k = e^{-E_k t}$

Euclidean time evolution

$$T^{t}|\psi\rangle = \sum_{k} Z_{k} e^{-E_{k}t}|k\rangle$$

$$\rightarrow Z_{0}e^{-E_{0}t}|0\rangle + (ESC)$$

No access to states/operators, but can compute correlators:

$$C(t) = \langle \psi | T^t | \psi \rangle$$
$$= \sum_k |Z_k|^2 \lambda_k^t$$

The power iteration algorithm

Apply *m* hits of *T* to purify ground state

$$|0\rangle \approx \left|b^{(m)}\right\rangle = \frac{T^{m}|\psi\rangle}{||T^{m}|\psi\rangle||} = \frac{T^{m}}{\sqrt{\langle\psi|T^{2m}|\psi\rangle}}$$

Approximate $\lambda_0 = \langle 0|T|0 \rangle$ as

$$\lambda_0^{(m)} = \left\langle b^{(m)} | T | b^{(m)} \right\rangle = \frac{\left\langle \psi | T^{2m+1} | \psi \right\rangle}{\left\langle \psi | T^{2m} | \psi \right\rangle}$$

The power iteration algorithm

Apply *m* hits of *T* to purify ground state

$$|0\rangle \approx \left|b^{(m)}\right\rangle = \frac{T^{m}|\psi\rangle}{||T^{m}|\psi\rangle||} = \frac{T^{m}}{\sqrt{\langle\psi|T^{2m}|\psi\rangle}} = \frac{T^{m}}{\sqrt{C(2m)}}$$

Approximate $\lambda_0 = \langle 0|T|0 \rangle$ as

$$\lambda_0^{(m)} = \left\langle b^{(m)} | T | b^{(m)} \right\rangle = \frac{\left\langle \psi | T^{2m+1} | \psi \right\rangle}{\left\langle \psi | T^{2m} | \psi \right\rangle} = \frac{C(2m+1)}{C(2m)}$$

Recover usual effective energy:

$$E^{\rm eff}(2t) = \log \lambda_0^{(2t)} = \log \frac{C(2t+1)}{C(2t)}$$

Outline

• Spectroscopy and the transfer matrix

Lanczos spectroscopy algorithm

Proof-of-principle demonstrations

Lanczos and the transfer matrix

• Standard effective mass = "power-iteration algorithm" for finding eigenvalues

$$|b^{(t)}\rangle \propto T^t |\psi\rangle$$
 $\log\langle b^{(t)}|T|b^{(t)}\rangle = \log \frac{C(2t+1)}{C(2t)} = E^{\text{eff}}(2t)$

von Mises and Pollaczek-Geiringer, Zeitschrift Angewandte Mathematik und Mechanik 9, 58 (1929)

Lanczos and the transfer matrix

• Standard effective mass = "power-iteration algorithm" for finding eigenvalues

von Mises and Pollaczek-Geiringer, Zeitschrift Angewandte Mathematik und Mechanik 9, 58 (1929)

Modern computational linear algebra uses more sophisticated methods, e.g.

Lanczos algorithm
Lanczos, J. Res. Natl. Bur.
Stand. B 45, 255 (1950)
$$|v_j\rangle \propto [T - T^{(m)}] |v_{j-1}\rangle$$
Applied to LQCD since at
least Barbour et al (1984) $T_{ij}^{(m)} = \langle v_i | T | v_j \rangle$ $E_k^{(m)} = -\ln \lambda_k^{(m)}$

• Exponentially faster convergence for systems with small gaps $\delta = a(E_1 - E_0)$

Kaniel, Mathematics of Computation 20, 369 (1966) Paige, PhD thesis 1971 Saad, SIAM 17 (1980) $E_0 - E_0^{(m)} \propto e^{-4m\sqrt{\delta}} \ll |E_0 - E^{\text{eff}}(2m)| \propto e^{-2m\delta}$

The residual bound

• Lanczos approximation error after finite number of iterations directly computable:

$$\min_{\lambda \in \{\lambda_n\}} |\lambda_k^{(m)} - \lambda| \le |\beta_{m+1} s_{mk}^{(m)}| \longleftarrow \text{Eigenvectors of } T^{(m)}$$
Paige, PhD thesis 1971
Matrix element $T_{m(m+1)}^{(m)}$

Rigorous quantification of excited-state effects!

- But the LQCD transfer matrix is infinite-dimensional....
- Applying Lanczos feasible by computing matrix elements $T_{ij}^{(m)}$ recursively
- Faster convergence evident in studies of toy data

Start:

$$|v_1\rangle = \frac{|\psi\rangle}{\sqrt{\langle\psi|\psi\rangle}} = \frac{|\psi\rangle}{\sqrt{C(0)}}$$
$$\alpha_1 = \langle v_1 | T | v_1 \rangle = \frac{C(1)}{C(0)}$$

Start:

$$|v_1\rangle = \frac{|\psi\rangle}{\sqrt{\langle\psi|\psi\rangle}} = \frac{|\psi\rangle}{\sqrt{C(0)}}$$
$$\alpha_1 = \langle v_1 | T | v_1 \rangle = \frac{C(1)}{C(0)}$$

Iterate:

- 1. Apply *T* and orthogonalize $|\tilde{v}_{j+1}\rangle = (T - \alpha_j)|v_j\rangle + \beta_j|v_{j-1}\rangle$
- 2. Normalize & compute α

$$\beta_{j+1}^{2} = \langle \tilde{v}_{j+1} | \tilde{v}_{j+1} \rangle$$
$$|v_{j+1}\rangle = \frac{1}{\beta_{j+1}} | \tilde{v}_{j=1} \rangle$$
$$\alpha_{j+1} = \langle v_{j+1} | T | v_{j+1} \rangle$$

Start:

$$|v_1\rangle = \frac{|\psi\rangle}{\sqrt{\langle\psi|\psi\rangle}} = \frac{|\psi\rangle}{\sqrt{C(0)}}$$
$$\alpha_1 = \langle v_1 | T | v_1 \rangle = \frac{C(1)}{C(0)}$$

After *m* iterations: Lanczos vectors $|v_j\rangle$ for j = 1, ..., m $\langle v_i | v_j \rangle = \delta_{ij}$

T in Lanczos vector basis:

Iterate:

- 1. Apply *T* and orthogonalize $|\tilde{v}_{j+1}\rangle = (T - \alpha_j)|v_j\rangle + \beta_j|v_{j-1}\rangle$
- 2. Normalize & compute α

$$\beta_{j+1}^{2} = \langle \tilde{v}_{j+1} | \tilde{v}_{j+1} \rangle$$
$$|v_{j+1}\rangle = \frac{1}{\beta_{j+1}} | \tilde{v}_{j=1} \rangle$$
$$\alpha_{j+1} = \langle v_{j+1} | T | v_{j+1} \rangle$$

$$T_{ij}^{(m)} = \langle \boldsymbol{v}_i | T | \boldsymbol{v}_j \rangle = \begin{bmatrix} \alpha_1 & \beta_2 & & 0\\ \beta_2 & \alpha_2 & \beta_3 & & \\ & \beta_3 & \alpha_3 & \ddots & \\ & & \ddots & \ddots & \beta_m \\ 0 & & & \beta_m & \alpha_m \end{bmatrix}$$

Start:

$$|v_1\rangle = \frac{|\psi\rangle}{\sqrt{\langle\psi|\psi\rangle}} = \frac{|\psi\rangle}{\sqrt{C(0)}}$$
$$\alpha_1 = \langle v_1 | T | v_1 \rangle = \frac{C(1)}{C(0)}$$

After *m* iterations: Lanczos vectors $|v_j\rangle$ for j = 1, ..., m $\langle v_i | v_j \rangle = \delta_{ij}$

T in Lanczos vector basis:

Iterate:

- 1. Apply *T* and orthogonalize $|\tilde{v}_{j+1}\rangle = (T - \alpha_j)|v_j\rangle + \beta_j|v_{j-1}\rangle$
- 2. Normalize & compute α

$$\beta_{j+1}^{2} = \left\langle \tilde{v}_{j+1} \middle| \tilde{v}_{j+1} \right\rangle$$
$$\left| v_{j+1} \right\rangle = \frac{1}{\beta_{j+1}} \middle| \tilde{v}_{j=1} \right\rangle$$
$$\alpha_{j+1} = \left\langle v_{j+1} \middle| T \middle| v_{j+1} \right\rangle$$

$$T_{ij}^{(m)} = \langle \boldsymbol{v}_i | T | \boldsymbol{v}_j \rangle = \begin{bmatrix} \alpha_1 & \beta_2 & & 0\\ \beta_2 & \alpha_2 & \beta_3 & & \\ & \beta_3 & \alpha_3 & \ddots & \\ & & \ddots & \ddots & \beta_m \\ 0 & & & \beta_m & \alpha_m \end{bmatrix}$$

Can compute from $C(t) = \langle \psi | T^t | \psi \rangle !$ (via a recursion relation)

Diagonalizing *T*

Diagonalizing *T*

Note: eigenvectors converge at same rate as eigenvalues! (Kaniel-Page-Saad)

Diagonalizing *T*

1.2

1.0

0.8

 $-\log\lambda^{(m)}$

Note: eigenvectors converge at same rate as eigenvalues! (Kaniel-Page-Saad)

Will noise destroy Lanczos?

Will noise destroy Lanczos?

• No

Will noise destroy Lanczos?

- No
- Lanczos is surprisingly robust to large-time correlation function noise

Is it really that easy?

Is it really that easy?

• No

Outline

• Spectroscopy and the transfer matrix

Lanczos spectroscopy algorithm

"Spurious eigenvalues"

Proof-of-principle demonstrations

Example:

Luscher-Weisz gauge action 2+1 stout-smeared clover fermions $M_{\pi} \approx 170 \text{ MeV}$ $a \approx 0.09 \text{ fm}$ $48^3 \times 96$ Nucleon $\chi \sim (u C \gamma_5 d) u$ Quarks smeared to r = 4.5 \bigotimes ~ known λ_0 from multi-state fits 0.8 Θ Θ 0.6 $E^{\mathrm{eff.}}(t)$ Θ 0.4 0.2 10 20 30 40 0 t

Example:

Luscher-Weisz gauge action 2+1 stout-smeared clover fermions $M_{\pi} \approx 170 \text{ MeV}$ $a \approx 0.09 \text{ fm}$ $48^3 \times 96$ Nucleon $\chi \sim (u C \gamma_5 d) u$ Quarks smeared to r = 4.5 \bigotimes ~ known λ_0 from multi-state fits 0.8 Θ Θ 0.6 $E^{\mathrm{eff.}}(t)$ Θ 0.4 0.2

20

t

30

40

10

Example:

Luscher-Weisz gauge action 2+1 stout-smeared clover fermions $M_{\pi} \approx 170 \text{ MeV}$ $a \approx 0.09 \text{ fm}$ $48^3 \times 96$ Nucleon $\chi \sim (u C \gamma_5 d) u$ Quarks smeared to r = 4.5 \bigotimes ~ known λ_0 from multi-state fits 0.8 Θ Θ 0.6 $E^{\mathrm{eff.}}(t)$ Θ 0.4 0.2

20

t

30

40

10

Example:

Luscher-Weisz gauge action 2+1 stout-smeared clover fermions $M_{\pi} \approx 170 \text{ MeV}$ $a \approx 0.09 \text{ fm}$ $48^3 \times 96$ Nucleon $\chi \sim (u C \gamma_5 d) u$ Quarks smeared to r = 4.5 \bigotimes ~ known λ_0 from multi-state fits 0.8 Θ Θ 0.6 $E^{\mathrm{eff.}}(t)$ Θ 0.4 0.2

20

t

30

40

10

Example:

Luscher-Weisz gauge action 2+1 stout-smeared clover fermions $M_{\pi} \approx 170 \text{ MeV}$ $a \approx 0.09 \text{ fm}$ $48^3 \times 96$ Nucleon $\chi \sim (u C \gamma_5 d) u$ Quarks smeared to r = 4.5 \bigotimes ~ known λ_0 from multi-state fits 0.8 Θ Θ 0.6 $E^{\mathrm{eff.}}(t)$ Θ 0.4 0.2

20

t

30

40

10

Example:

Luscher-Weisz gauge action 2+1 stout-smeared clover fermions $M_{\pi} \approx 170 \text{ MeV}$ $a \approx 0.09 \text{ fm}$ $48^3 \times 96$ Nucleon $\chi \sim (u C \gamma_5 d) u$ Quarks smeared to r = 4.5 \bigotimes ~ known λ_0 from multi-state fits 0.8 Θ Θ 0.6 $E^{\mathrm{eff.}}(t)$ Θ 0.4 0.2

20

t

30

40

10

Example:

Luscher-Weisz gauge action 2+1 stout-smeared clover fermions $M_{\pi} \approx 170 \text{ MeV}$ $a \approx 0.09 \text{ fm}$ $48^3 \times 96$ Nucleon $\chi \sim (u C \gamma_5 d) u$ Quarks smeared to r = 4.5 \approx known λ_0 from multi-state fits 0.8 0.8 0.6 Θ Θ 0.6

Example:

0.4

0.2

0

10

20

t

30

40

Luscher-Weisz gauge action 2+1 stout-smeared clover fermions $M_{\pi} \approx 170 \text{ MeV}$ $a \approx 0.09 \text{ fm}$ $48^3 \times 96$ Nucleon $\chi \sim (u C \gamma_5 d) u$ Quarks smeared to r = 4.5 \bigotimes ~ known λ_0 from multi-state fits 0.8 Θ Θ 0.6 $E^{\text{eff.}}(t)$ Θ

Example:

Luscher-Weisz gauge action 2+1 stout-smeared clover fermions $M_{\pi} \approx 170 \text{ MeV}$ $a \approx 0.09 \text{ fm}$ $48^3 \times 96$ Nucleon $\chi \sim (u C \gamma_5 d) u$ Quarks smeared to r = 4.5 $\bigotimes \sim \text{known } \lambda_0$ from multi-state fits 0.8

Is it really that easy?

- No
- Lanczos produces an increasingly dense forest of "spurious eigenvalues"

Cullum-Willoughby

 Jane Cullum and Ralph Willoughby developed a useful criterion for identifying spurious eigenvalues in 1981

Cullum and Willoughby, Journal of Computational Physics 44, 329 (1981)

DEFINITION 1. Spurious \equiv Outwardly similar or corresponding to something without having its genuine qualities.

$$T^{(m)} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & & & 0 \\ \gamma_{2} & \alpha_{2} & \beta_{3} & & & & \\ & \gamma_{3} & \alpha_{3} & \ddots & & \\ & & \ddots & \ddots & \beta_{m-1} \\ & & & \gamma_{m-1} & \alpha_{m-1} & \beta_{m} \\ 0 & & & & \gamma_{m} & \alpha_{m} \end{pmatrix} \qquad \qquad T_{2}^{(m)} = \begin{pmatrix} \lambda & \lambda & & & & 0 \\ & \alpha_{2} & \beta_{3} & & & & \\ & & \gamma_{3} & \alpha_{3} & \ddots & & \\ & & & \gamma_{3} & \alpha_{3} & \ddots & & \\ & & & \ddots & \ddots & \beta_{m-1} \\ & & & & \gamma_{m-1} & \alpha_{m-1} & \beta_{m} \\ 0 & & & & & \gamma_{m} & \alpha_{m} \end{pmatrix}$$

DEFINITION 2. Any simple eigenvalue of T_m that is pathologically close to an eigenvalue of \hat{T}_2 will be called "spurious."

Think positive

- Since transfer matrix is positive-definite by assumption, any eigenvalues with nonzero imaginary parts can be discarded as spurious
- "Non-zero" can be kept exact even in the presence of noise by adopting oblique Lanczos formalism

Saad, SIAM 19 (1982)

Think positive

- Since transfer matrix is positive-definite by assumption, any eigenvalues with nonzero imaginary parts can be discarded as spurious
- "Non-zero" can be kept exact even in the presence of noise by adopting oblique Lanczos formalism

Saad, SIAM 19 (1982)

• This gets rid of many spurious eigenvalues but still leaves some that must be wrong because they correspond to $M_N < m_{\pi}$

Bootstrapping Cullum-Willoughby

 Defining "pathologically close" is easy for finite matrices with floating-point roundoff error, harder for Monte Carlo simulations of infinite-dimensional matrices

DEFINITION 1. Spurious \equiv Outwardly similar or corresponding to something without having its genuine qualities.

- Distances between $T^{(m)}$ and $T_2^{(m)}$ fluctuate due to noise much more for spurious than non-spurious eigenvalues
- Use bootstrap histograms to define cutoff

Non-spurious proton energies

• Largest eigenvalue not removed as spurious defines ground-state energy

 $E_0 = -\ln\lambda_0^{(m)}$

• Excited-state energies also accessible

Outline

• Spectroscopy and the transfer matrix

Lanczos spectroscopy algorithm

• "Spurious eigenvalues"

Proof-of-principle demonstrations

Lanczos proton mass results

- Bootstrap uncertainties complicated by outliers due to spurious eigenvalue misidentification within bootstrap samples
- Robust estimators e.g. based on confidence intervals critical

 Residual bound can be used to identify when Lanczos results have converged, provides bound on finite-t approximation errors

Correlations

 Correlations between Lanczos results at different imaginary times fall off rapidly with similar scale to correlations between standard effective mass results

Projecting out the noise

 $\operatorname{Var}[aE_0^{(m)}]$

 Signal-to-noise of Lanczos results does not degrade exponentially for large t

Why?

 Projection operator solution to signal-to-noise problem:

Della Morte and Giusti, Comp. Phys. Communications 180 (2009)

$$\langle \mathcal{O}(t)\overline{\mathcal{O}}(0)\rangle$$
 $\langle \mathcal{O}(t)P\overline{\mathcal{O}}(0)\rangle$

removes states from variance without quantum numbers of "signal squared," e.g. three-pion states in nucleon variance

 Building such projectors is hard — but Lanczos provides Krylov-space approximations

Saad, SIAM 17 (1980) Saad, SIAM 19 (1982)

Proton mass variance

$$P_n^{(m)} \equiv |y_n^{(m)}\rangle\langle y_n^{(m)}|$$

 $pprox |n
angle \langle n|$

Boosted states are noisy

Avkhadiev, Shanahan, MW, Zhao, PRL 132 (2024)

Conclusions

- Lanczos enables rapid convergence even with small energy gaps
- Two-sided error bounds allow excited-state effects to be fully quantified
- Lanczos results do not show exponential signal-to-noise degradation

 Spurious eigenvalues lead to challenges: Cullum-Willoughby + bootstrap sufficient?

Qualitatively better properties than previous approaches to spectroscopy

...but what about matrix elements?