Progress toward Moments of Light-Cone Distribution Amplitudes from a Heavy-Quark Operator Product Expansion

Fermilab

Alex Chang, William Detmold, **Anthony Grebe**, Issaku Kanamori, David Lin, Robert Perry, Yong Zhao

August 12, 2024

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Outlin	٩					

2 HOPE Method

- On the second second
- Quenched Second Moment
- 5 Dynamical Calculation
- 6 Fourth Moment

		11 A 11.	1			
0000						
Motivation	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA

Light-Cone Distribution Amplitude

$$\langle 0|ar{\psi}(z)\gamma^{\mu}\gamma^{5}W[z,-z]\psi(-z)|M(\mathbf{p})
angle=if_{M}p^{\mu}\int_{-1}^{1}d\xi\,e^{-i\xi p\cdot z}arphi_{M}(\xi)$$

- Represents overlap between meson and q ar q pair with momenta $(1\pm\xi)/2$
- Relates quark-level process (e.g. electroweak interactions) to hadron-level interactions (experimental observables)
- Universal (relates to multiple different processes)

Motivation ○●○○	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
$B \to \pi$	π Decay					

• Rate depends on CKM matrix elements and terms such as

$$f^+(0)\int_0^1 dx \ T'_i(x)\varphi_\pi(x) + \int_0^1 d\xi \ dx \ dy \ T''_i(\xi,x,y)\varphi_B(\xi)\varphi_\pi(x)\varphi_\pi(y)$$

where $\mathcal{T}_i^{I,II}$ are known functions and φ_B, φ_π are distribution amplitudes

- Complicated decay form (various ways to subdivide quark energies) require convolution of functions to capture structure
- Sensitive to symmetry violation and thus complex phase of CKM matrix

0000	000000	00000	0000	0000	0000000	00000
Motivation	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA

Pion Electromagnetic Form Factor

Figure credit: L. Chang et al., nucl-th/1307.0026, PRL 111, 141802

Motivation 000●	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Hadroi	nic Light-I	Bv-Light				

• Pion pole depends on $\pi \to \gamma^* \gamma^*$ transition form factor $F_{\pi\gamma^*\gamma^*}(-Q_1^2, -Q_2^2)$ • $F_{\pi\gamma^*\gamma^*}$ can be factorized into other (calculable) contributions times $\varphi(\xi)$

$$\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-Q_{2}^{2}) = \int_{0}^{1} du \int d^{4}x \ e^{-ik \cdot x} \frac{(x \cdot K)P^{2} - (x \cdot P)(K \cdot P)}{K^{2}P^{2} - (K \cdot P)^{2}} \phi_{\pi}(x^{2},u)H(x^{2},0)$$

SO(4) average
$$= -2i \int_{0}^{1} du \int d^{4}x \frac{J_{2}(kx)}{k^{2}} \phi_{\pi}(x^{2},u)H(x^{2},0) \rightarrow \text{Lattice input}$$

Physical pion structure function

Adapted from Tian Lin @ Lattice 2024

0000	000000	00000	0000	0000	0000000	00000
Motivation 0000	●00000	Numerical Implementation	Quenched Second Moment	Over Dynamical Calculation	Fourth Moment	Kaon LCDA 00000

$$\langle 0|ar{d}(-z)\gamma_{\mu}\gamma_{5}\mathcal{W}[-z,z]u(z)|\pi^{+}(p)
angle=ip_{\mu}f_{\pi}\int_{-1}^{1}d\xi\ e^{-i\xi p\cdot z}arphi_{\pi}(\xi)$$

- z is light-like separation $(z^2 = 0)$
- Euclidean space \Rightarrow light-cone is single point
- Need indirect methods
 - Quasi-PDF [Ji, 1305.1539, PRL 110, 262002]
 - Pseudo-PDF [Radyushkin, 1705.01488, PRD 96 034025; Radyushkin, 1909.08474, PRD 100 116011]
 - Expansion into moments

Motivation 0000	HOPE Method 0●0000	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Lattice	e Determi	nation of LCD	Д			

• Expansion of LCDA into Mellin moments

$$\langle \xi^n
angle = \int_{-1}^1 d\xi \, \xi^n arphi_\pi(\xi)$$

- Moments can be written in terms of local derivative operators
- Second moment computed with this approach [Bali et al., 1903.08038, JHEP 2020, 37]
- For n>2, mix with lower-dimensional lattice operators diverge instead of converging as $a \rightarrow 0$
- Alternative approach to compute moments needed

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Hadro	nic Tenso	r				

$$V^{\mu
u}(q,p) = \int d^4x \, e^{iq\cdot x} \langle 0| \, T \left[A^{\mu}(x/2) A^{
u}(-x/2)
ight] |\pi^+(p)
angle$$

- Transition between pion and two axial current insertions
- Amenable to lattice calculations

Source: arXiv:hep-lat/0507007, PRD **73**, 014501

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Hadro	nic Tenso	r				

$$V^{\mu
u}(q,p) = \int d^4x \, e^{iq\cdot x} \langle 0| \, T \left[A^{\mu}(x/2) A^{
u}(-x/2)
ight] |\pi^+(p)
angle$$

- Transition between pion and two axial current insertions
- Amenable to lattice calculations
- Free to make currents flavor changing (and intermediate quark heavy)

Source: arXiv:hep-lat/0507007, PRD **73**, 014501

0000	000000	00000	0000	0000	0000000	00000			
Onerat	Decreter Droduct Expansion (ODE)								

Operator Product Expansion (OPE)

$$\pi \underbrace{\Psi}_{\psi_l} \sim \sum_n C_n(m_{\Psi}) \pi \underbrace{\mathcal{O}_n}_{\psi_l} + \mathcal{O}\left(\frac{1}{m_{\Psi}^{\tau}}, \frac{1}{Q^{\tau}}\right)$$

Motivation 0000	HOPE Method 000●00	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Operat	or Produ	ct Expansion (OPE)			

Operator Product Expansion (OPE)

$$\pi \underbrace{\Psi}_{\psi_l} \sim \sum_n C_n(m_{\Psi}) \pi \underbrace{\mathcal{O}_n}_{\psi_l} + \mathcal{O}\left(\frac{1}{m_{\Psi}^{\tau}}, \frac{1}{Q^{\tau}}\right)$$

$$\left\langle 0 \left| \gamma^{\mu} \frac{-i(i\not\!D + \not\!q) + m_{\Psi}}{(iD+q)^2 + m_{\Psi}^2} \gamma^{\nu} \right| \pi^+(\mathbf{p}) \right\rangle = \left\langle 0 \left| \gamma^{\mu} \frac{i(i\not\!D + \not\!q) + m_{\Psi}}{q^2 + (iD)^2 + m_{\Psi}^2} \sum_{n=0}^{\infty} \left(\frac{2iq \cdot D}{q^2 + (iD)^2 + m_{\Psi}^2} \right)^n \gamma^{\nu} \right| \pi^+(\mathbf{p}) \right\rangle$$

Motivation 0000	HOPE Method 000●00	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Operat	tor Drodu	ct Expansion (

Operator Product Expansion (OPE)

$$\pi \underbrace{\Psi}_{\psi_l} \sim \sum_n C_n(m_{\Psi}) \pi \underbrace{\mathcal{O}_n}_{\psi_l} + \mathcal{O}\left(\frac{1}{m_{\Psi}^{\tau}}, \frac{1}{Q^{\tau}}\right)$$

$$\left\langle 0 \left| \gamma^{\mu} \frac{-i(i\not\!D + \not\!q) + m_{\Psi}}{(iD+q)^2 + m_{\Psi}^2} \gamma^{\nu} \right| \pi^+(\mathbf{p}) \right\rangle = \left\langle 0 \left| \gamma^{\mu} \frac{i(i\not\!D + \not\!q) + m_{\Psi}}{q^2 + (iD)^2 + m_{\Psi}^2} \sum_{n=0}^{\infty} \left(\frac{2iq \cdot D}{q^2 + (iD)^2 + m_{\Psi}^2} \right)^n \gamma^{\nu} \right| \pi^+(\mathbf{p}) \right\rangle$$
$$= \sum_{n=0}^{\infty} \left\langle 0 \left| \gamma^{\mu} \frac{i(i\not\!D + \not\!q) + m_{\Psi}}{q^2 + m_{\Psi}^2} \left(\frac{2p \cdot q}{q^2 + m_{\Psi}^2} \right)^n \gamma^{\nu} \right| \pi^+(\mathbf{p}) \right\rangle \langle \xi^n \rangle + O\left(\frac{\Lambda_{\text{QCD}}}{(q^2 + m_{\Psi}^2)^{1/2}} \right)$$

using $D|\pi^+(\mathbf{p})
angle o \xi p|\pi^+(\mathbf{p})
angle$, $D^2 \sim O(\Lambda^2_{QCD})$

 Motivation
 HOPE Method
 Numerical Implementation
 Quenched Second Moment
 Dynamical Calculation
 Fourth Moment
 Kaon LCDA

 Heavy
 Quark
 Operator
 Product
 Expansion
 (HOPE)
 Kaon LCDA

$$\mathcal{N}^{\mu
u}(p,q) = rac{2if_{\pi}arepsilon^{\mu
u
ho\sigma}q_{
ho}p_{\sigma}}{ ilde{Q}^{2}}\sum_{\substack{n=0\ ext{even}}}^{\infty}rac{ ilde{\omega}^{n}}{2^{n}(n+1)}C_{W}^{(n)}(ilde{Q},m_{\Psi},\mu)\langle\xi^{n}
angle(\mu) + O\left(rac{\Lambda_{ ext{QCD}}}{ ilde{Q}}
ight)$$

$$ilde{Q}^2 = -q^2 - m_\Psi^2\,, \qquad ilde{\omega} = rac{p\cdot q}{ ilde{Q}^2}\,.$$

• Odd moments vanish by isospin symmetry

Motivation 0000	HOPE Method 0000€0	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Heavy	Quark Or	perator Produc	t Expansion (F	IOPE)		

$$\mathcal{W}^{\mu
u}(p,q) = rac{2if_{\pi}arepsilon^{\mu
u
ho\sigma}q_{
ho}p_{\sigma}}{ ilde{Q}^{2}}\sum_{\substack{n=0\ ext{even}}}^{\infty}rac{ ilde{\omega}^{n}}{2^{n}(n+1)}C_{W}^{(n)}(ilde{Q},m_{\Psi},\mu)\langle\xi^{n}
angle(\mu) + O\left(rac{\Lambda_{ ext{QCD}}}{ ilde{Q}}
ight)$$

$$ilde{Q}^2 = -q^2 - m_\Psi^2\,, \qquad ilde{\omega} = rac{p\cdot q}{ ilde{Q}^2}\,.$$

- Odd moments vanish by isospin symmetry
- Need to suppress $\Lambda_{ ext{QCD}}/ ilde{Q}$ corrections \Rightarrow need either q or $m_{ ext{\Psi}}$ large
- Large-*q* (short-distance) studied in [Braun and Müller, 0709.1348, EPJC **55**, 349; Bali et al., 1807.06671, PRD **98** 094507]
- This talk will discuss large- m_{Ψ} approach

\ \ /:1	Castinia					
Motivation 0000	HOPE Method 00000●	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000

Wilson Coefficients

Detmold, AVG, Kanamori, Lin, Perry, Zhao, 2103.09529, PRD 104, 074511

A. Grebe 11/40

Motivation 0000	HOPE Method	Numerical Implementation •0000	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Hadro	nic Tenso	r				

$$V^{\mu\nu}(q,p) = \int d^{4}x \, e^{iq\cdot x} \left\langle 0 \left| \mathcal{T} \left[A^{\mu} \left(\frac{x}{2} \right) A^{\nu} \left(-\frac{x}{2} \right) \right] \right| \pi^{+}(p) \right\rangle$$
$$\int dq_{4} e^{-iq_{4}\tau} V^{\mu\nu}(q,p) = \int d^{3}x \, e^{iq\cdot x} \left\langle 0 \left| \mathcal{T} \left[A^{\mu} \left(\frac{x}{2}, \frac{\tau}{2} \right) A^{\nu} \left(-\frac{x}{2}, -\frac{\tau}{2} \right) \right] \right| \pi^{+}(\mathbf{p}) \right\rangle$$

• Inverse FT of $V^{\mu
u}$ calculable on lattice in terms of 2-point and 3-point functions

$$egin{aligned} \mathcal{C}_2(au) &= \langle \mathcal{O}_\pi(au) \mathcal{O}_\pi^\dagger(0)
angle \ \mathcal{C}_3(au_e, au_m) &= \langle \mathcal{A}^\mu(au_e) \mathcal{A}^
u(au_m) \mathcal{O}_\pi^\dagger(0)
angle \end{aligned}$$

• Isolation of ground state relies on sufficiently large separation between 0 and $\min{\{\tau_e,\tau_m\}}$

Motivation 0000	HOPE Method	Numerical Implementation ○●○○○	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Hadro	nic Tenso	r				

A. Grebe 13/40

0000	000000	00000	0000	0000	000000	00000				
Choice	Choice of Kinematics									

$$V^{\mu\nu}(p,q) = \frac{2if_{\pi}\varepsilon^{\mu\nu\rho\sigma}q_{\rho}p_{\sigma}}{\tilde{Q}^{2}}\sum_{\substack{n=0\\\text{even}}}^{\infty}\frac{\tilde{\omega}^{n}}{2^{n}(n+1)}C_{W}^{(n)}(\tilde{Q},m_{\Psi},\mu)\langle\xi^{n}\rangle(\mu) + O\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right)$$

• Wilson coefficients $C_W^{(n)}(\mu=2 \text{ GeV})$ calculated to 1-loop

- Fit parameters: f_{π} , m_{Ψ} , $\langle \xi^2 \rangle$
- $\bullet\,$ Contribution of second moment $\langle\xi^2\rangle$ suppressed by

$$rac{| ilde{\omega}|^2}{2^2 imes 3} = rac{1}{3} \left|rac{p\cdot q}{ ilde{Q}^2}
ight|^2 \lesssim 10^{-2}$$

Motivation HOPE Method Numerical Implementation Quenched Second Moment Dynamical Calculation Fourth Moment Kaon LCDA

Choice of Kinematics

 $\mathbf{p} = (1, 0, 0) = (0.64 \text{ GeV}, 0, 0)$ $2\mathbf{q} = (1, 0, 2) = (0.64 \text{ GeV}, 0, 1.28 \text{ GeV})$

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Noise	Reduction	l				

A. Grebe 16/40

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Fitting	Hadronic	Tensor				

• Fit ratio of 2- and 3-point correlators to inverse FT of OPE

-						
Motivation	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA

A. Grebe 18/40

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Contin	uum Extr	apolation				

A. Grebe 19/40

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Compa	arison to l	Literature				

Detmold, AVG, Kanamori, Lin, Mondal, Perry, Zhao, 2109.15241, PRD 105, 034506

A. Grebe 20/40

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation ●000	Fourth Moment	Kaon LCDA 00000
Dynan	nical Ense	mhles				

- Redo calculation CLS 2 + 1-flavor isoclover ensembles
- Good control over lattice spacing dependence
- Also allow control over m_π
 - Previously uncontrolled systematic
- Also examine excited states more carefully

Figure credit: S. Collins @ CERN (2019)

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation ○●○○	Fourth Moment 0000000	Kaon LCDA 00000
Excitor	d Stata C	ontomination				

A. Grebe 22/40

A. Grebe 24/40

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment •000000	Kaon LCDA 00000
Suppre	ession of S	Signal				

$$V^{\mu
u}(p,q) = rac{2if_{\pi}arepsilon^{\mu
u
ho\sigma}q_{
ho}p_{\sigma}}{ ilde{Q}^2}\sum_{\substack{n=0 \ ext{even}}}^{\infty}rac{ ilde{\omega}^n}{2^n(n+1)}C^{(n)}_W(ilde{Q},m_{\Psi},\mu)\langle\xi^n
angle(\mu) + O\left(rac{\Lambda_{ ext{QCD}}}{ ilde{Q}}
ight)$$

- $\langle \xi^n
 angle$ suppressed by $(ilde{\omega}/2)^n \sim 0.1^n$
- Splitting signal into real/imaginary parts facilitates extraction of $\langle\xi^2\rangle$
- Trick works best for n = 2 (only 2 channels available)

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00000
Higher	Moment	um				

A. Grebe 26/40

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment 00●0000	Kaon LCDA 00000			
Signal	Signal-to-Noise Problem								

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment 000€000	Kaon LCDA 00000
Variati	onal Metl	nod				

- Excited state contamination more severe at larger **p**
- Also steeper penalty for extending Euclidean time
- Solution better interpolating operator to create pion
- Pion can be created with $\bar\psi\gamma_5\psi$ or $\bar\psi\gamma_4\gamma_5\psi$
- Use both and take optimal linear combination to reduce excited state contamination

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment 0000●00	Kaon LCDA 00000
Variati	onal Met	hod				

A. Grebe 29/40

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment 00000●0	Kaon LCDA 00000	
Truncated Solver Method							

- $\bullet\,$ Lattice calculations typically use solver precision of $\varepsilon_{\rm fine} \sim 10^{-10}$
- ullet Sloppier precision of $\varepsilon_{\rm sloppy}\sim 10^{-5}$ cheaper but biases results
- Correct for bias with 1 fine solve/config [Bali et al., CPC 181, 1570 (0910.3970)]:

$$\langle \mathcal{O} \rangle_{\text{true}} = \left(\langle \mathcal{O} \rangle_{\text{fine}} - \langle \mathcal{O} \rangle_{\text{sloppy}} \right) + \sum_{i=1}^{N} \langle \mathcal{O}_i \rangle_{\text{sloppy}}$$

- In practice, bias correction $(\langle O \rangle_{\sf fine} \langle O \rangle_{\sf sloppy}) \ll$ stat error with $\varepsilon_{\sf sloppy} = 10^{-5}$
- $\bullet\,$ Reduces compute cost by factor of $\gtrsim 2$ with little additional noise
 - Can use single precision for sloppy solves and smearing

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment 000000●	Kaon LCDA 00000	
Preliminary Results							

 $\langle \xi^2 \rangle = 0.28 \pm 0.03$ (stat.)

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA ●0000
Kaon	CDA					

$$\langle 0|ar{d}(-z)\gamma_{\mu}\gamma_{5}\mathcal{W}[-z,z]u(z)|\pi^{+}(p)
angle=ip_{\mu}f_{\pi}\int_{-1}^{1}d\xi\,e^{-i\xi p\cdot z}arphi_{\pi}(\xi)$$

• Isospin symmetry in $\pi \rightarrow$ even in $z \rightarrow$ odd moments vanish

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA ●0000
Kaon						

$$\langle 0|ar{s}(-z)\gamma_{\mu}\gamma_{5}\mathcal{W}[-z,z]u(z)|\mathcal{K}^{+}(p)
angle=ip_{\mu}f_{\mathcal{K}}\int_{-1}^{1}d\xi\,e^{-i\xi p\cdot z}arphi_{\mathcal{K}}(\xi)$$

• Isospin symmetry in $\pi
ightarrow$ even in z
ightarrow odd moments vanish

• For kaon,
$$m_s
eq m_I o \langle \xi^1
angle, \langle \xi^3
angle, \dots
eq 0$$

- Odd moments suppressed by powers of $m_s m_l$: numerically small
- Additional fit parameters in OPE fits to hadronic tensor

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 0●000
Extrac	ting Mom	ients				

• Different linear combinations of V(p,q)
ightarrow different moments

$$V_{\text{even}}^{12}(p,q) \equiv \frac{1}{2} \left[V_{K}^{12}(p,q) - V_{K}^{12}(p,-q) \right] = N^{12}(p,q) \sum_{n \text{ even}} \left(\frac{\tilde{\omega}}{2} \right)^{n} \langle \xi^{n} \rangle_{K}$$
$$V_{\text{odd}}^{12}(p,q) \equiv \frac{1}{2} \left[V_{K}^{12}(p,q) + V_{K}^{12}(p,-q) \right] = N^{12}(p,q) \sum_{n \text{ odd}} \left(\frac{\tilde{\omega}}{2} \right)^{n} \langle \xi^{n} \rangle_{K}$$

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 0●000
Extrac	ting Mom	ents				

• Different linear combinations of $V(p,q) \rightarrow$ different moments

$$V_{\text{even}}^{12}(p,q) \equiv \frac{1}{2} \left[V_{K}^{12}(p,q) - V_{K}^{12}(p,-q) \right] = N^{12}(p,q) \sum_{n \text{ even}} \left(\frac{\tilde{\omega}}{2} \right)^{n} \langle \xi^{n} \rangle_{K}$$
$$V_{\text{odd}}^{12}(p,q) \equiv \frac{1}{2} \left[V_{K}^{12}(p,q) + V_{K}^{12}(p,-q) \right] = N^{12}(p,q) \sum_{n \text{ odd}} \left(\frac{\tilde{\omega}}{2} \right)^{n} \langle \xi^{n} \rangle_{K}$$

- Further separation into different channels by considering real/imaginary parts (even/odd in $\tau)$
 - 4 channels total

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA 00●00
7eroth	and Firs	t Moments				

• Good fits to tree-level OPE \rightarrow good prospects for extracting $\langle \xi^1 \rangle_{\mathcal{K}}$

0000	000000	00000	0000	0000	0000000	00000					
Higher Moments											

- Tree-level OPE poor fit for higher moments
- Need perturbative corrections to extract $\langle\xi^2\rangle_{\cal K}$
 - Computation in progress

Motivation 0000	HOPE Method	Numerical Implementation	Quenched Second Moment	Dynamical Calculation	Fourth Moment	Kaon LCDA ○○○○●	
Conclusion							

• Pion LCDA important but challenging – good to have complementary methods

• $\langle \xi^2
angle (\mu=2 \text{ GeV}) = 0.210 \pm 0.036$ (quenched) – compatible with other methods

- Moving to dynamical ensembles with lighter masses
- Preliminary extraction of $\langle\xi^4\rangle$ working to increase statistics
- Explorations of kaon LCDA and nonvanishing odd moments

Thank you to R. Edwards, B. Joó, S. Ueda and others for software development (Chroma, QPhiX, Bridge++) and to ASRock, DiCOS, Barcelona Supercomputing Center, and RIKEN for computational resources!

Multi-Mass Solver

- Need to invert Dirac operator $D =
 ot\!\!/ \, + m$ for quark propagators
- Can write $D = 1 \kappa H$ with $\kappa = \frac{1}{2(m+4)}$ and

$$H(n|m) = \sum_{\mu} (1 - \gamma_{\mu}) U_{\mu} \delta_{n+\hat{\mu},m}$$

• Can expand D^{-1} as hopping expansion

$$D^{-1}\psi = \sum_{j=0}^{\infty} \kappa^j H^j \psi$$

- *H* is independent of m can reuse $H^{j}\psi$ for all masses
- More expensive for single mass but can be competitive with enough masses

Pion Electromagnetic Form Factor

Adapted from L. Chang et al., nucl-th/1307.0026

Reconstruction of LCDA

Comparison of LCDA Models

Figure credit: Bali et al., 1807.06671, PRD 98, 094507

A. Grebe 40/40