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Weinberg's BFT



Weinbergs BFT

* Weinberg got a Nobel prize for establishing
electroweak unification theory based on
renormalizability constraints.

--- t Hooft provide the actual proof

* However, after winning the prize, he turned around
about renormalizability. Non-renormalizable field
theory can also make sensel

Key word: power counting



Chiral perturbation theary

* Given degrees of freedom (pion & nucleon) and
symmetry, one can write down the most general
lagrangian for low-energy chiral dynamics (EFT).

* The lagrangian is not renormalizale in the sense that
It requires infinite number of counter terms.

» However, at a fixed order in chiral power counting,
there are only a finite number of “low-energy
constants’ paramerizing high-energy physics.

* All physical observables can be calculated to a
particular order using these LEC's.






Wilson's OPE and QCDfactonzation

* For QCD, we have Wilson's OPE or factorization
 High-energy physics-> coefficient function
* Low-energy physics-> local operators
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QCD Factonzation as B-T. HHP view

* We can write fields in terms of low-energy and high-
energy part

Y = Yhign + Yiow
A = Apign + Aow

* For HEP interested in pQCD, we have an EFT with
Yhign plus “high:energy constants’

(l/)low- -Alow lplow)

which parametrizes the low-energy physics.



OCD Factonzation as BFT: hadron structure

* For QCD theorists interested in hadron structure, we
Integrate out the high-energy degrees of freedom,
Yhign, and the remainder is a low-energy lagrangian

LWiow) =2 L
* This Is an EFT for “high-energy constants’



Partons as H-T



Partons

e Partons are infinite-momentum collinear modes
which are part of low-energy QCD DOF.

e Parton EFT
e H-formulation: infinite momentum frame

light-front quantization

 Lagrangian formulation:
Soft-collinear effective theory (SCET)



Non-local B-T

* Parton EFT is non-local

. 1
contains operators —
LD

* Power counting-> twist counting

* |Infinite number of counter terms-> infinite number of
“high-energy constant”

 This is the PDF



Inverse problem

* Infinite number of constants require infinite number
of experimental data to fix.

* But we don’t havel

* This Is the inverse problem: there is an optimal
solution but there is no unique solution: “global

analysis’
* We assume there are correlations among infinite
constants

FOO) = 3, € x%(1 — x)F



The hope?

* Solve parton EFT, not fit!

* Light-front quantization
* Light-cone singularity
* Non-perturbative solutions
* Critical theory

e Soft-Collinear EFT

* Time-dependent correlation function!
* Quantum computer



Quas-FLF as Huclidean BT



Quas partons

* Partons are idealized objects, which do not exist In
nature

* |n reality, we have quasi-partons in a large-
momentum hadrons

* Quasi-PDF are PHYSICAL momentum distribution in a
large-P hadron, more physical than partons.



0S Factonzation in quasi-POF

[G. 1: Tree-level diagrams for DIS process.
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respectively, where v# = (1,0,0,v) and v"v, =1 /4%, In
the Bjorken limit, 0 < xp <1, v~ Q — oc and v — 1.



Fig. 1, in which the hadron tensor is,

: 4
WH (rp. Q%) = %Im/ (;[;)l Tr [v*S(k + q)v" M (k)]
+ crossing (3)

where S(k) is the single quark propagator of four-
momentum k*, and M(k) is the single quark Green’s
function in the hadron,

M) = [ e PIT, O0 (©1P) (4

where |P) is the hadron state.

We will now restrict 1), to those collinear fields mak-
ing up the hadron with velocity v,

Viow () = Vo (@) + ... | (5)
then

M (k)P = /51456"5"5'*"(PITEf(O)ﬁl’?(é)Im- (6)



The effective Fourier components of ¢, () have momen-
tum k*, with the following decomposition,

E — ot i 3@# -+ [;‘i‘ l{!z ~ i'\‘(zgc]:)a (7)

where v/ = (v, —1), t‘ﬁ = —1/7%, and v -7 = 2v; a ~
YAqcep and 3 ~ Aqcep/v. Thus the coefficient of 0/ are
suppressed by 1/~. Moreover, 1, satifies,

;/’LL = () \ (8)

following from the leading order equations of motion
(EOM) in 1/~.

The leading contribution to the hadron tensor comes
from transverse polarization of the photon and thus
i,7 =L. In light of the trace in Eq.(3), the quark propa-
gator can be simplified,

i(k+q) i B iry?
(k+q)2 +ie 2k-q—Q?+ie 2k* —Q+ie’

(0)

S(k+q) =




where in the second equality, we use Eq. (8) in the nu-
merator to eliminate } and neglected k% ~ A%g(:‘:D in the
denominator. Defining £* = Quy/2xp, the integration
over k” and &, in Eq. (3) can be carried out,

LV > Z Py 1 .
Wwh = —g¢/"Im /OO %f(y) ip —1+ie + crossing
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with dimensionless A = 2P*. The above result is identical
to the standard QCD factorization result, except that the
distribution f(y, P*) replaces the light-cone distribution

) — 1 - i 2 X\~ T T ( )\ 2y
f(xz) = 5P / dA\e" (Pl (An)yTW (An,0)(0)|P) .

(11)
The key of the derivation is that the k£’ components of
the quark four-momentum can be eliminated through the
equation of motion (EOM) of the effective field ¥, =0.
And therefore, £ integration can be carried out in the



Al = avt + Bot + AY (12)

and at leading order, only the & component dominates.
For example, when there is one interaction with the gauge
potential (see Fig. 1), we replace the quark propagator
in Eq. (3) by

S'(k--_]_ -+ Q)"‘,Q»Q(k_]_ -+ A‘.-Q -+ Q') , (13)

and M (k) by M®(kq, k) where an additional A (k2) ap-
pears. Both S can be simplified by the EOM of the ef-
fective field,

i~F
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S(ky + ko + q) ~ ' PR

( 1 2 I) 21;_%4_2[;5_@4—26 ( )

For A4,, the situation is a bit involved, since 4% ~ A! as
v — ¢, we have the leading contributon,

o 0.0 z =z
A'U - A'u r A‘U / (15)
However, after commutation with +*, we have

"‘f"ZA@ _ 7(14?‘,.’() 4+ A«i'ﬁz ),-.,_.z ~ 2Af (16)

! !

where again we have used quark’s EOM and A? ~ AY.
Therefore, effectively all 4, = —2A7~*, which allows one
to calculate diagrams with an arbitrary number of A%
interactions.

Adding all the quark eikonal interactions, one has

~ - _]_ = 71 n T =
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QPDF factonzation

* PDF factorization can be carried out for more
complicated Feynman diagrams and for other
processes like Drell-Yan.

* Global analysis can be carried out for quasi-PDF

* QPDF can be calculated directly on lattice QCD, there
IS no inverse problem!



LaMET as Ruclidean BT for partons



BT for partons

 High-energy physical observables can be factorized
In terms of PDFs

* The same can be done in terms of gPDFs

* Therefore, PDFs can be entirely expressed in terms of
qPDFs

* This is the large-momentum effective theory for
partons. LaMET



Leading LaMET lagrangian

» LaMET starts with hadrons with large momentum P or
velocity v,

of velocity v. The leading effective lagrangian for the
quark collinear modes can be written as,

o= [ w-D 1
L ,—ZJ"U Ly D+ 2’72 +(EDJ_)2£5D

(EDJ_ ):| iw"'v
(19)

where v = (v,0,0,—1)/2v and v,7" = 1. One can also
add the leading-order lagrangian for the gluon collinear
modes. This effective theory formally converges to SCET
or light-front quantization in the v — ¢ limit. However,



Features of LaMET

* There is no light-cone singularities
no extra renormalization/ zero mode problem

* |t Is a Euclidean theory, can be calculated on lattice or
Instanton liquid.

P serves as a rapidity regulator, and evolution
equation can be derived
* For PDF, it is DGLAP
* For TMDs, it is the Collins-Soper evolution.



There s no inverse problem

* Take parton observables as physical, one can a
Weinberg-like systematic expansion

d P~ P~
o= [ (555 (1)
AQCD dyy dys dy3 yi Y2 yz P~
( )Z/ooyl Yo Y3 (ﬂi‘fb‘x#)
x f; ( p ) - .. (22)

* So long as the expansion converges, PDF at any x can
be computed with controlled errors.




X-Cependence

* LaMET calcaluates/predicts the x-dependence
without model-dependent fits (inverse problem)

* No other methods can do this.



Conclusion

* LaMET is an EFT in the sense of Weinberg
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