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The Universe, per the Standard Model
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This picture is not complete!
No gravity!

No verified theory of
quantum gravity

No dark matter!

Astronomy + cosmology
require a “dark” particle

Neutrinos as we know
them don’t have needed

behavior

No dark energy!

The universe is being
inflated by an invisible

source of energy – 
what?

Not enough matter!

Unable to generate
enough asymmetry
between matter &
antimatter in the 

Big Bang
Naturalness!

Higgs field parameters
seem highly fine-tuned

No neutrino masses!

Neutrino masses require
degrees of freedom

beyond the SM
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Matter particle motion
+ interaction with forces

Matter particle interaction
with Higgs field

Flavor physics: studying the matter sector & its interactions

+ Matter particle interaction
with unknown things???
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A Prototype
Consider neutron decay  

● New interaction
– changes particle type: not electromagnetic or gravitational 

interaction!
– rare: neutron half-life is quite long, ~ 10 min

● described at low energy by four fermion coupling (Fermi 
1933)

– but this predicts interaction rates that grow as GF
2 E2

– Can guess that there should exist new physics at a scale ~ 1/GF
1/2 

~ 300 GeV
● Direct observation of force carriers W, Z in 1983 at CERN
● Fermi theory is prototype of an “effective field theory”

mW = 80.4 GeV
mZ = 91.2 GeV

Nature on Fermi’s paper:
“speculations too remote from reality
to be of interest to the reader”

 ∝ GF
[GeV-2]

Low energy: something is going on!
High energy: let’s see what exactly it is
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The B Zoo
● Like other quarks, b quarks are only seen in 

hadrons
– mesons (bq) or baryons (bqq)
– for flavor physics purposes generally ignore 

excited states or bb bound states (aka the upsilons) 
– the behavior of those is dominated by QCD

● b quarks are (relatively) long-lived because |
Vcb|, |Vub| are small

– lightest B hadron lifetimes ~ 1.5 ps
– characteristic flight distance cτ ~ 0.5 mm: 

displaced decays detectable with precision 
tracking detectors

– feebleness of weak decays potentially allows other 
forces to affect rates noticeably

CMS
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Where do we study B hadrons? e+e-

● General mode: e+e-  → ϒ(4S)  BB→
– Precisely tuned to 10.58 GeV

● Previous experiments: BaBar (SLAC), Belle (KEK)
● Current experiment: Belle-II
● Advantages:

– Clean production environment: no (few) extra particles, 
one collision at a time

– Constrained kinematics (total 4-momentum is known, 
presence of B implies B)

– Reconstruct neutral particles (e.g. π0  γγ)→  relatively well
● Disadvantages:

– Produce ϒ via EM processes, cross sections are low
– only have large samples of B+ and B0 since Bs etc. are too 

heavy
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Where do we study B hadrons? pp
● General mode: pp  ????  X→ → b Xb

● Broad spectrum of B hadrons produced, at various 
momenta

● At the LHC:
– dedicated experiment for B physics (LHCb)
– two general purpose experiments that do B physics 

(ATLAS, CMS)
● Advantages:

– Strong production  high cross sections→

– Produce all B hadron species
● Disadvantages:

– Messy collision environment, few kinematic 
constraints

– Generally hard to work with π0 etc.
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Past and Future

● Great project of B physics in 
the 2000s: demonstrating the 
unitarity of the CKM matrix

● Great project for the next 20 
years: precision constraints 
on rare processes1

1 Personal opinion
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Four-Fermion Interactions

● Collapse an expression with two dimension 4 operators + a 
propagator to a dimension 6 operator, as |q| << mW if the fermions are 
in hadrons

● For W exchange, currents must be left-handed

X

Y

R

S
W

X

R

S

Y
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Effective Field Theory
● “Old school” QFT: only dimension 4 or lower operators can exist, because higher-

dimension operators are non-renormalizable

– but exchange of high-mass particles will induce effective higher-dimension operators for 
low-energy interactions

● “New” QFT: generically work with higher-dimension operators
– standard in B physics for a long time: compare measurements to SM predictions to search 

for discrepancies
– calculate with them without worrying about the underlying ultraviolet completion

✔ ✘

e.g. for b  s →
transitions:

Wilson coefficients
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Hadronic Physics
● Need amplitude for quarks from a short-

distance interaction to coalesce into a 
particular final state hadron

– a priori lattice gauge theory calculations should 
be accurate, but have limitations (in particular 
large hadronic recoil, and for strongly-decaying 
hadrons in the final state)

– otherwise typically fit form factors from data 
using models/approximations

● Also have to care about “long-distance” 
physics, i.e. what hadrons do

– for example, by far the biggest contributors to 
inclusive b  s→ ℓℓ are CKM-allowed b  sc→ c, 
followed by cc  → ℓℓ

PRD 107 014510 (2023)
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Things To Look For
Some new physics ideas...

b

s

Z’

ℓ

ℓ b b

c

H-

ℓ

ν

LQ

ℓ

ℓ

s

Non-diagonal Z’, leptoquarks, charged Higgs, …

Each would leave a different pattern in the Wilson coefficients
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Anomalies
Two classes of potential anomalies under 
study:

● b  s→ ℓℓ processes:
– non-resonant b  s→ μμ shows non-SM 

m(μμ) and angular distributions

● b  c→ ℓν processes:
– lepton flavor universality violation: τ/μ 

ratio > SM (τ mass means ratio is not 1)

Will show details from ATLAS analyses, 
when available...
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b  s→ ℓℓ
● The “spectator quark” determines the actual hadrons 

involved
– down: B0  [K→ *0  K→ +π-]ℓℓ, (KS

0 → π+π-)ℓℓ
– up: B+  [K→ *+ → KS

0 π+]ℓℓ, K+ℓℓ
– strange: Bs

0  [→ φ K→ +K-]ℓℓ, ℓℓ
– baryon: Λb

0  → pK-ℓℓ
● Different final states can probe different EFT 

operators
● Avoid charmonium resonance regions populated by 

the (not rare) b  ccs process→
● Can look at muon/electron ratio for processes that 

might not be lepton flavor-universal
● Can also look at various distributions – e.g. 

branching fraction vs dilepton mass, or angular 
distributions

Bs  → φμμ

1606.00916
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The Anomaly That Wasn’t: Universality Violation
● Differences between muon and electron 

rates would be a smoking gun for new 
physics

– could not be faked by hadronic physics
● Significant evidence was reported in 

multiple channels by LHCb
● Turned out to be a consistent 

underestimation of electron backgrounds
● Discovery of new physics in these kinds 

of channels will require evidence from 
multiple experiments

Dec 2022

June 2017
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B0  K*→ μμ Angular Distributions

● New physics in b  s→ μμ can alter the 
angular distributions of the decay 
products in B0  K→ *μμ  K→ +π-μμ

– relies on K* being a vector with two 
different quarks

● “P’5” coefficient shows a potential 
deviation from SM

– look in different bins of q2(μμ), avoiding 
J/ψ, ψ(2S),  resonancesɸ

● ATLAS result from Run 1, 20 fb-1

JHEP 10 (2018) 047

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2013-02/
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B0  K*→ μμ Angular Distributions

● “Most interesting bin” is P’5, q2  [4 GeV, 6 ∈
GeV]

● Can see e.g. lack of expected cos φ 
modulation in signal fit: P’5 ≈ 0 in our fit for 
this bin

– of course, simultaneous fit to θK and θL as well
– not a significant difference from predictions but 

deviation in the same direction as other results
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B(s)  → μμ
● Bs  → μμ is another process sensitive to the bsμμ 

vertex, but with different coupling structure
● Use 2015+2016 data, 26.3 fb-1 after prescales
● Rare decays sensitive to bsμμ and bdμμ couplings 

(incl. O10)
● ATLAS dimuon mass resolution not good enough to 

separate Bs and B peaks
– fit simultaneously, but expect strong correlation of 

branching fractions
● Normalize number of observed decays to the 

number of B+  J/→ ψ K+:

Efficiency-corrected
B(s)  → μμ yield

Reference branching fraction

Efficiency-corrected
B  J/→ ψ K yield

Ratio of B meson
species production

JHEP 04 (2019) 098

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2018-09/
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B(s)  → μμ Results
● Combine Run 1 and early 13 TeV data

– results compatible
– sensitive to lower BRs for B  → μμ vs

Bs  → μμ because fd >> fs 
– anticorrelation of Bd and Bs BR

Combined
Run 1 + 2015/6

2015/6 result uncertainties

JHEP 04 (2019) 098

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2018-09/
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B(s)  → μμ Combination
+ CMS update [PLB 842 137955 (2023)]
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Fits
● Fits significantly favor non-SM C9

– but flavor-universal
● Remarkably consistent EFT picture
● Multi-σ discrepancies in individual 

measurements
● Would look to hadronic uncertainties 

for a SM explanation
– some of these could be constrained with 

data

Wilson coefficients

EPJ C 83 648 (2023)



23

Fits
● Consistency of fit across bins
● Different NP scenarios leave 

different fingerprints in Wilson 
coefficients
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b  c→ ℓν
● With spectator quarks:

– B0  [→ D- → K+π-π-] ℓ+ν, 
[D*-  (→ D0  K→ +π-)π-] ℓ+ν

– Bs
0  [D→ s  (→ φ  K→ +K-)π] ℓ+ν

– Bc
+  J/→ ψ ℓ+ν

– Λb  → Λc ℓ+ν
● Harder to do at hadron colliders due to 

neutrinos
– needs detailed modeling of higher 

multiplicity decays (e.g. B  D*→ -π0ℓν, where 
the π0 is missed)

● Can potentially be done with both 
leptonic and hadronic τ decays
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More on b  c→ ℓν

● Experimental situation more 
challenging than for b  s→ ℓℓ

● R(D*) and R(J/ψ) are more 
accessible to hadron colliders 
than R(D) because D* are more 
pure

– tag with D*  D→ 0π
● Need theory for semileptonic 

decay form factor prediction; 
updated lattice computations 
in progress
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LHCb Data
PRL 131 111802 (2023)
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LHCb: Example Control Region
D0μ + exactly one additional π
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Interpretation of b  c→ ℓν

● The process is tree-level in the 
SM: visible modifications 
require large BSM contribution

– presumably tree-level
● Measurements pulling away 

from SM are combined 
R(D)/R(D*) determinations

● No conclusive single 
experiment measurements, 
frustrating situation
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Anomaly summary
● Lots of channels show few-σ 

departures from prediction
● b  s→ ℓℓ completely driven by 

LHCb except for P5’ and B(s)  → μμ
● b → cℓν has important 

contribution from B factories 
(especially R(D))

b 
 s

→
ℓℓ

b 
 c

→
ℓν

LFUV
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ATLAS  B anomalies⨉
● Overall, ATLAS has a lot of data

– in many cases we can be competitive with 
LHCb, e.g. Bs  → μμ for the same years of 
running has similar sensitivity for all 
experiments

● We also are an independent experiment 
with different systematics

– observation of new physics needs confirmation
● Our capabilities depend strongly on triggers

– OK with inclusive dimuon, great if we can do 
dimuon + X

● Lack of particle ID not so important if 
intermediate resonances are used to reduce 
background

K*0μμ angular
analysis
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ATLAS Triggers
● L1 dimuon triggers are the base for muon 

channels
– Dedicated chains at HLT which find 

additional tracks and reconstruct μμ+X to 
boost rate

● Dielectron triggers use all L1 accepts and 
searches for soft electrons at HLT

– looking to reduce the set of L1 items to 
those that produce reasonable rate

– separate chains that use L1 EM+EM (or 
jet+EM) items
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ATLAS vs CMS Triggering Strategies
● CMS has cleaner low-pT hardware triggers for muons than does ATLAS, can tolerate a higher 

rate into the software trigger
● CMS has a few strategies for increasing data rate:

– “parking”: record events to be reconstructed later, when offline resources become available. Trigger on 
muon from a “tag” B decay.

– “scouting”: reconstruct muons in the software trigger, write out only very high-level information.
● ATLAS can do these, as well as writing “partial events” (writing out only parts of the raw data 

for an event)
– our studies do not find these to be optimal strategies for us
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Summary & Outlook
● Precision measurement in B physics complements direct searches 

for new physics
● Lepton flavor universality is gone, but regardless, still very 

significant departures from SM expectation in b  s→ ℓℓ
● b  cℓν anomalies still there but (to my taste) less compelling→
● However experiments other than LHCb need to step up and confirm 

measurements
– ATLAS and CMS have capabilities in this regard
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