B's Behaving Badly

Peter Onyisi

University of Washington, 7 May 2024

The Universe, per the Standard Model

This picture is not complete!

No verified theory of quantum gravity

No gravity!

No neutrino masses!

Neutrino masses require degrees of freedom beyond the SM

Naturalness!

Higgs field parameters seem highly fine-tuned

No dark energy!

The universe is being inflated by an invisible source of energy – what?

Not enough matter!

Unable to generate enough asymmetry between matter & antimatter in the Big Bang

١N

Flavor physics: studying the matter sector & its interactions

Matter particle motion + interaction with forces

Matter particle interaction with Higgs field

+ Matter particle interaction with unknown things???

A Prototype

Consider neutron decay

- New interaction
	- changes particle type: not electromagnetic or gravitational interaction!
	- rare: neutron half-life is quite long, \sim 10 min
- described at low energy by four fermion coupling (Fermi 1933)
	- $\;$ but this predicts interaction rates that grow as $\mathrm{G}_{\mathrm{F}}^{-2}\,\mathrm{E}^{2}$
	- $\,$ Can guess that there should exist new physics at a scale $\sim 1/G_{_{\rm F}}^{_{1/2}}$ \sim 300 GeV
- Direct observation of force carriers W, Z in 1983 at CERN
- Fermi theory is prototype of an "effective field theory"

Low energy: something is going on! **High energy**: let's see what exactly it is

$$
m_w = 80.4 \text{ GeV}
$$

$$
m_z = 91.2 \text{ GeV}
$$

Nature on Fermi's paper: "speculations too remote from reality to be of interest to the reader"

The B Zoo

- Like other quarks, b quarks are only seen in hadrons
	- $\overline{}$ mesons (b $\overline{}$) or baryons (bqq)
	- for flavor physics purposes generally ignore excited states or b b bound states (aka the upsilons) – the behavior of those is dominated by QCD
- b quarks are (relatively) long-lived because | V_{cb} , $|V_{ub}|$ are small
	- lightest B hadron lifetimes \sim 1.5 ps
	- characteristic flight distance $c\tau \sim 0.5$ mm: displaced decays detectable with precision tracking detectors
	- feebleness of weak decays potentially allows other forces to affect rates noticeably $\mathcal{L}(\mathcal{L})$ CMS

Where do we study B hadrons? e†e⁻

- General mode: e+e \rightarrow Y(4S) \rightarrow BB
	- Precisely tuned to 10.58 GeV
- Previous experiments: BaBar (SLAC), Belle (KEK)
- Current experiment: Belle-II
- Advantages:
	- Clean production environment: no (few) extra particles, one collision at a time
	- Constrained kinematics (total 4-momentum is known, presence of B implies \overline{B})
	- $\,$ Reconstruct neutral particles (e.g. π $^{\rm 0}$ \rightarrow γγ) relatively well
- Disadvantages:
	- Produce ϒ via EM processes, cross sections are low
	- $\hbox{--} \quad$ only have large samples of B* and B $^{\rm 0}$ since B $_{\rm s}$ etc. are too heavy

Where do we study B hadrons? pp

- General mode: $pp \rightarrow ???? \rightarrow X_b X_{\overline{b}}$
- Broad spectrum of B hadrons produced, at various momenta
- At the LHC:
	- dedicated experiment for B physics (LHCb)
	- two general purpose experiments that do B physics (ATLAS, CMS)
- Advantages:
	- Strong production \rightarrow high cross sections
	- Produce all B hadron species
- Disadvantages:
	- Messy collision environment, few kinematic constraints
	- $\,$ Generally hard to work with π $^{\rm o}$ etc.

Past and Future

- Great project of B physics in the 2000s: demonstrating the unitarity of the CKM matrix
- Great project for the next 20 years: precision constraints on rare processes 1

1 Personal opinion

Four-Fermion Interactions

- Collapse an expression with two dimension 4 operators $+$ a propagator to a dimension 6 operator, as $|q| \ll m_W$ if the fermions are in hadrons
- For W exchange, currents must be left-handed

Effective Field Theory

● "Old school" QFT: only dimension 4 or lower operators can exist, because higherdimension operators are non-renormalizable

$$
\frac{2}{3}eA_{\mu}\bar{u}\gamma^{\mu}u \qquad \qquad \frac{G}{\Lambda^{2}}(\bar{s}\gamma_{\mu}b)(\bar{\ell}\gamma^{\mu}\ell) \mathbf{X}
$$

- but exchange of high-mass particles will induce effective higher-dimension operators for low-energy interactions
- "New" QFT: generically work with higher-dimension operators
	- standard in B physics for a long time: compare measurements to SM predictions to search for discrepancies
	- calculate with them without worrying about the underlying ultraviolet completion

$$
\text{E.g. for } b \to s \qquad \mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum (C_i \mathcal{O}_i + C_i' \mathcal{O}_i') + \text{h.c.} \quad \begin{aligned} \mathcal{O}_9 &= (\bar{s} \gamma_\mu P_L b)(\bar{\ell} \gamma^\mu \ell) \\ \text{transitions:} \qquad \mathcal{H}_{\text{eff}} &= -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum (C_i \mathcal{O}_i + C_i' \mathcal{O}_i') + \text{h.c.} \quad \begin{aligned} \mathcal{O}_9 &= (\bar{s} \gamma_\mu P_L b)(\bar{\ell} \gamma^\mu \ell) \\ \mathcal{O}_9' &= (\bar{s} \gamma_\mu P_R b)(\ell \gamma^\mu \ell) \end{aligned}
$$

Hadronic Physics

- Need amplitude for quarks from a shortdistance interaction to coalesce into a particular final state hadron
	- a priori lattice gauge theory calculations should be accurate, but have limitations (in particular large hadronic recoil, and for strongly-decaying hadrons in the final state)
	- otherwise typically fit form factors from data using models/approximations
- Also have to care about "long-distance" physics, i.e. what hadrons do
	- for example, by far the biggest contributors to inclusive $b \rightarrow s \ell \ell$ are CKM-allowed $b \rightarrow s \ell \ell$, followed by $c\overline{c} \rightarrow \ell \ell$

Things To Look For

Some new physics ideas...

Non-diagonal Z', leptoquarks, charged Higgs, …

Each would leave a different pattern in the Wilson coefficients

Anomalies

<u>b</u> = 0 ^b

^B¯⁰ **b**

Two classes of potential anomalies under study:

- $b \rightarrow s \ell \ell$ processes:
	- non-resonant $b \rightarrow s \mu\mu$ shows non-SM m(μμ) and angular distributions
- $b \rightarrow c \ell v$ processes:
	- $-$ lepton flavor universality violation: $τ/μ$ ratio > SM (τ mass means ratio is not 1)

Will show details from ATLAS analyses, when available...

$b \rightarrow s l l$

- The "spectator quark" determines the actual hadrons involved
	- $\hbox{--} \quad$ down: $\mathbf{B}^{\mathfrak{0}} \rightarrow [\mathrm{K}^{\ast\mathfrak{0}}\rightarrow \mathrm{K}^{\ast}\mathrm{\pi}^{\cdot}]\ell\ell$, $(\mathrm{K}_{\textnormal{\tiny S}}{}^{\mathfrak{0}}\rightarrow \mathrm{\pi}^{\ast}\mathrm{\pi}^{\cdot})\ell\ell$
	- $\hbox{--}\quad$ up: $\mathbf{B}^*\! \rightarrow\! \mathrm{[K^{*_\ast}{\rightarrow} K_S^0\pi^*]\ell\ell,N^*\ell\ell}$
	- $\hbox{--}$ strange: **B** $_{\rm s}^{\rm o}$ $\hbox{--}$ [φ $\hbox{--}$ K+K-]ll, ll
	- $-$ baryon: $\mathbf{\Lambda_{b^0}} \rightarrow \mathrm{pK}\text{-}\mathbf{\ell\ell}$
- Different final states can probe different EFT operators
- Avoid charmonium resonance regions populated by the (not rare) b \rightarrow ccs process
- Can look at muon/electron ratio for processes that might not be lepton flavor-universal
- Can also look at various distributions $-$ e.g. branching fraction vs dilepton mass, or angular distributions

The Anomaly That Wasn't: Universality Violation

- Differences between muon and electron rates would be a smoking gun for new physics
	- could not be faked by hadronic physics
- Significant evidence was reported in multiple channels by LHCb
- Turned out to be a consistent underestimation of electron backgrounds
- Discovery of new physics in these kinds of channels will require evidence from multiple experiments

$\rm B^0 \rightarrow K^{\star}$ μμ Angular Distributions

- New physics in $b \rightarrow s\mu\mu$ can alter the angular distributions of the decay $\operatorname{products} \, \mathrm{in} \, \mathrm{B^0} \,{\to}\, \mathrm{K}^\star$ μμ $\,\to$ K^\star π μμ
	- relies on K^* being a vector with two different quarks
- " $P's$ " coefficient shows a potential deviation from SM
	- $\,$ $\,$ look in different bins of q²($\mu\mu$), avoiding J/ψ, ψ(2S), $φ$ resonances
- ATLAS result from Run 1, 20 ${\rm fb^{-1}}$

$$
\frac{9}{32\pi} \left[\frac{3(1 - F_L)}{4} \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1 - F_L}{4} \sin^2 \theta_K \cos 2\theta_L \right]
$$

- $F_L \cos^2 \theta_K \cos 2\theta_L + S_3 \sin^2 \theta_K \sin^2 \theta_L \cos 2\phi$
+ $S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_L \cos \phi$
+ $S_6 \sin^2 \theta_K \cos \theta_L + S_7 \sin 2\theta_K \sin \theta_L \sin \phi$
+ $S_8 \sin 2\theta_K \sin 2\theta_L \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_L \sin 2\phi$
+ $S_8 \sin 2\theta_K \sin 2\theta_L \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_L \sin 2\phi$
 $P'_{j=4,5,6,8} = \frac{S_{i=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}$

[JHEP 10 \(2018\) 047](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2013-02/)

$\rm B^0 \rightarrow K^{\star}$ μμ Angular Distributions

- "Most interesting bin" is P' $_5$, q 2 \in [4 GeV, 6 2 GeV]
- Can see e.g. lack of expected cos φ modulation in signal fit: $P'_{5} \approx 0$ in our fit for this bin
	- of course, simultaneous fit to $θ_k$ and $θ_L$ as well
	- not a significant difference from predictions but deviation in the same direction as other results

\rightarrow μμ

- $B_s \rightarrow \mu\mu$ is another process sensitive to the bs $\mu\mu$ vertex, but with different coupling structure
- Use 2015+2016 data, 26.3 fb $^{-1}$ after prescales
- Rare decays sensitive to bsμμ and bdμμ couplings $(incl. O_{10})$
- ATLAS dimuon mass resolution not good enough to separate Bs and B peaks
	- fit simultaneously, but expect strong correlation of branching fractions
- Normalize number of observed decays to the number of B+ \rightarrow J/ ψ K+:

$B_{(s)} \rightarrow \mu\mu$ Results

- Combine Run 1 and early 13 TeV data
	- results compatible
	- sensitive to lower BRs for $B \to \mu\mu$ vs $B_s \rightarrow \mu\mu$ because $f_d >> f_s$
	- anticorrelation of B_d and B_s BR

Combined Run 1 + 2015/6

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8 \pm 0.7) \times 10^{-9}$, $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (-1.9 \pm 1.6) \times 10^{-10}$.

$B_{(s)} \rightarrow \mu\mu$ Combination

+ CMS update [PLB 842 137955 (2023)]

Fits

- Fits significantly favor non-SM C_9
	- but flavor-universal
- Remarkably consistent EFT picture
- Multi-σ discrepancies in individual measurements
- Would look to hadronic uncertainties for a SM explanation
	- some of these could be constrained with data

Wilson coefficients
$$
\mathcal{O}_9 = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell)
$$

$$
\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum (C_i \mathcal{O}_i + C_i' \mathcal{O}_i') + \text{h.c.} \frac{\mathcal{O}_{10} = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \gamma_5 \ell)}{\mathcal{O}_9' = (\bar{s}\gamma_\mu P_R b)(\ell \gamma^\mu \ell)}
$$

Fits

- Consistency of fit across bins
- Different NP scenarios leave different fingerprints in Wilson coefficients

$\mathrm{b}\rightarrow \mathrm{c}\ell \mathrm{v}$

- With spectator quarks:
	- $-$ **B**⁰ \rightarrow [D \rightarrow K⁺ π π] ℓ ⁺ v , $\left[\textrm{D*} \rightarrow \left(\textrm{D}^{\textrm{o}} \rightarrow \textrm{K}^{\textrm{+}}\textrm{\pi}^{\textrm{-}}\right)$ π-] $\ell^{\textrm{+}}$ ν
	- $-$ **B**_s⁰ \rightarrow [D_s \rightarrow (φ \rightarrow K⁺K·)π] ℓ⁺ν
	- [−] **B**_c⁺ → J/ψ ℓ⁺ν
	- $-$ **Λ**_b \rightarrow Λ_c ℓ ⁺ν
- Harder to do at hadron colliders due to neutrinos
	- needs detailed modeling of higher multiplicity decays (e.g. B \rightarrow D* $\pi^{\scriptscriptstyle 0}\ell$ v, where the π $^{\rm o}$ is missed)
- Can potentially be done with both leptonic and hadronic τ decays

More on $b \rightarrow c \ell v$

- **Experimental situation more** challenging than for $b \rightarrow s \ell \ell$
- $R(D^*)$ and $R(J/\psi)$ are more accessible to hadron colliders than $R(D)$ because D^* are more pure
	- $-$ tag with D^{*} → D⁰π
- Need theory for semileptonic decay form factor prediction; updated lattice computations in progress

LHCb Data

PRL 131 111802 (2023) \rightarrow Data (3 fb⁻¹) $B\rightarrow D^{\dagger} \tau \nu$ $B\rightarrow D \tau v$ $B\rightarrow D^{(*)}D X$ $B\rightarrow D^* \mu\nu$ $Comb. + misID$ $B\rightarrow D^0 \mu \nu$ $\left|B\rightarrow D^{*0}\mu V\right|$ $\big|B\rightarrow D^{*+}\mu\nu$

LHCb: Example Control Region

Interpretation of $b \rightarrow c \ell v$

- The process is tree-level in the SM: visible modifications require large BSM contribution
	- presumably tree-level
- Measurements pulling away from SM are combined R(D)/R(D*) determinations
- No conclusive single experiment measurements, frustrating situation

Anomaly summary

- Lots of channels show few-σ departures from prediction
- $b \rightarrow s \ell \ell$ completely driven by LHCb except for P_5' and $B_{(s)} \rightarrow \mu\mu$
- $b \rightarrow c$ ev has important contribution from B factories (especially R(D))

$\overline{\text{ATLAS}} \times \text{B}$ anomalies

- Overall, ATLAS has a lot of data
	- in many cases we can be competitive with LHCb, e.g. $B_s \rightarrow \mu\mu$ for the same years of running has similar sensitivity for all experiments
- We also are an independent experiment with different systematics
	- observation of new physics needs confirmation
- Our capabilities depend strongly on triggers
	- OK with inclusive dimuon, great if we can do dimuon + X
- Lack of particle ID not so important if intermediate resonances are used to reduce background

ATLAS Triggers

- L1 dimuon triggers are the base for muon channels
	- Dedicated chains at HLT which find additional tracks and reconstruct μμ+X to boost rate
- Dielectron triggers use all L1 accepts and searches for soft electrons at HLT
	- looking to reduce the set of L1 items to those that produce reasonable rate
	- separate chains that use L1 EM+EM (or jet+EM) items

ATLAS vs CMS Triggering Strategies

- CMS has cleaner low- p_T hardware triggers for muons than does ATLAS, can tolerate a higher rate into the software trigger
- CMS has a few strategies for increasing data rate:
	- "parking": record events to be reconstructed later, when offline resources become available. Trigger on muon from a "tag" B decay.
	- "scouting": reconstruct muons in the software trigger, write out only very high-level information.
- ATLAS can do these, as well as writing "partial events" (writing out only parts of the raw data for an event)
	- our studies do not find these to be optimal strategies for us

Summary & Outlook

- Precision measurement in B physics complements direct searches for new physics
- Lepton flavor universality is gone, but regardless, still very significant departures from SM expectation in $b \rightarrow s \ell \ell$
- b \rightarrow clv anomalies still there but (to my taste) less compelling
- However experiments other than LHCb need to step up and confirm measurements
	- ATLAS and CMS have capabilities in this regard