


## FCC STUDY PLANS FOLLOWING MTR

Michael Benedikt, Jean-Paul Burnet, Frank Zimmermann

TE FCC workshop, 16 May 2024



## FCC FS Mid-Term Review concluded in February 2024

The goal of the FCC FS mid-term review is to assess the progress of the Study towards the final report.

Deliverables approved by the Council in September 2022:

https://indico.cern.ch/event/1197445/contributions/5034859/attachments/2510649/4315140/spc-e-1183-Rev2-c-e-3654-Rev2\_FCC\_Mid\_Term\_Review.pdf

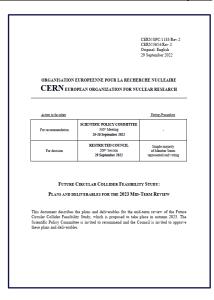
#### Deliverables:

D1: Definition of the baseline scenario

D2: Civil engineering

D3: Processes and implementation studies with the Host States

D4: Technical infrastructure


D5 : FCC-ee accelerator

D6: FCC-hh accelerator

D7: Project cost and financial feasibility

D8: Physics, experiments and detectors

Many thanks to the Host States for their strong support!



#### **Documents:**

- ☐ Mid-term report (all deliverables except D7)
- Executive Summary of mid-term report
- ☐ Updated cost assessment (D7)
- ☐ Funding model (D7)

#### **Review** process:

- ☐ Oct 2023: Scientific Advisory Committee (scientific and technical aspects)
  - and Cost Review Panel (ad hoc committee; cost and financial aspects)
- Nov 2023: SPC and FC
- 2 Feb 2024: Council

Many thanks to the SAC, CRP, SPC, FC and the Council for the very useful reviews!



## **FCC** key dates

| Date       | Deliverable   Achievement   Target                                                                                         |
|------------|----------------------------------------------------------------------------------------------------------------------------|
| End 2024   | Completion of technical work for Feasibility Study                                                                         |
| March 2025 | Feasibility Study Report - complete draft ready for submission to ESPPU                                                    |
| End 2025   | Systems description for entire project                                                                                     |
| 2027       | Technical pre-design for entire project 2027  → requirements and specifications to enable CE tender design                 |
| 2031/32    | Start of CE construction; TDR to enable prototyping, industrialization towards component production for TI and accelerator |



## Main goals for 2024/begin 2025

- Completion of technical work for Feasibility Study until end 2024
  - Implementation of recommendations of the mid-term review
  - Focus on "feasibility items" and items with important impact on cost/performance
  - Develop a risk register
  - Update cost estimate to reach cat 3 level on cost uncertainty.
  - Further develop the funding model based on discussions with the Council
- Complete FS by March 2025 as input for ESPP update.
- In parallel, continue work with host states on project definition and responsibilities, authorization procedures, excavation material strategy and regional implementation development.



## Pre-TDR phase from April 2025 until end 2027

- Main goal is to provide all information to Council to allow taking a decision on the project at the end of 2027 or mid-2028
  - further develop the civil engineering and the technical design all major components, so as to provide a more detailed cost estimate with reduced uncertainties
  - Continuation of technical R&D activities.
  - Continuation of site investigations and perform an overall integration study to specify requirements of technical infrastructure, accelerators and detectors for subsequent civil engineering design in case the project goes ahead.
  - Launch of environmental impact study in 2026
  - Work with host states on regional implementation development and authorization procedures.



# Analysis of mid-term review recommendations from SAC, CRP, SPC, FC and Council (i)

Analysis of recommendations and planning for implementation, F. Gianotti and M. Benedikt, presented to Council in March 25.

#### **Until/for Feasibility Study March 2025:**

- Increase resources of FCC FS team (SAC, FC, SPC)
- Establish pre-project team to significantly improve confidence in design and cost estimate (CRP)
- Ramp-up accelerator R&D and design (CRP)
- Decision on FCC-ee injector system (SAC, SPC) and cost (CRP)
- Baseline on FCC-hh injector system (SAC, SPC)
- Avoid different RF systems for Z and W/H (SAC)
- Clarify logistic (safety) for a 10km-long 5.5m-diameter tunnel (CRP)
- Perform safety risk analysis with external consultant (SPC)
- Emphasize system integration and interfaces between work packages (CRP)
- Provide FCC-hh cost (although with less precision than for FCC-E) (FC, SPC)
- State cost of FCC-ee due to preparation for FCC-hh (FC)
- Identify opportunities for heat recovery to the benefit of local use (SAC)
- Procedures for conservation of He (SAC)



# Analysis of mid-term review recommendations from SAC, CRP, SPC, FC and Council (ii)

#### **Until/for Feasibility Study March 2025:**

- Clarify LHC role in the FCC-ee era (FC)
- Financial implications of the various operational sequences and e.g. running at H peak (FC, SPC)
- For final report provide well-defined baseline layout for all aspects of the FCC ee machine (SPC)
- Provide well-understood and prioritized R&D plan for FCC-hh in the final FS report (SPC)
- Develop roadmaps for LTS & HTS magnets for FCC-hh and include report on HFM about FCC-hh feasibility (SPC)
- Provide more detailed construction schedule for tunnel and accelerator (SPC)
- Provide more info on the reliability of the simulation of transport and logistics for installation phase (SPC)
- Workshop to further define accelerator scope, define interfaces, identify missing scope/cost (CRP)
- Include FTEs needed for R&D, design and construction phases (SPC)



# Analysis of mid-term review recommendations from SAC, CRP, SPC, FC and Council (iii)

#### For 2027-2028, project approval, start of CE design contract:

- CO2 footprint over full project lifecycle (SAC, SPC, Council)
- Environmental impact and sustainability (FC, Council)
- Discuss sustainability issues for FCC-hh (SPC)
- SCRF performance improvement (Q and gradient) (SAC)
- R&D on NEG coating to reduce risks (SPC)
- Sensitivity to commodity prices (SAC)
- Continue to develop benchmarks as reference for FCC-ee cost (CRP)
- Revisit CERN's procurement policies and learn for other big facilities to ensure balanced industrial return without increasing cost (FC)
- Risks of not achieving FCC-ee luminosity (SPC)
- Heat recovery to the benefit of local use technical implementation (SAC)
- FCC-hh magnet R&D (SAC)
- Evaluate pros/cons of commercial vs in-house systems for controls (SPC)



## Further aspects to be taken into account

- Mid-term recommendations do not give the full picture. Many areas deserve attention and require collaborative transverse setups, e.g.
  - synchrotron radiation management & shielding concept
  - arc mock-up studies and integration optimisation
- Importance of design optimisation towards industrial production, maintenance, reliability, etc.
- Importance of parallel cost optimisation (CAPEX/OPEX) and cost CONTROL with respect to mid-term estimate
- Importance of international support for project approval
- Need for collaboration and integration of partners, also in view of low-risk management of potential in-kind contributions



## FCC-ee Accelerator organisation 2024 (preliminary)

#### Accelerators FCC-ee F. Zimmermann, T. Raubenheimer /SLAC

## **Accelerator Technical Implementation**

JP. Burnet, T. Raubenheimer

- Beam transfer systems
- Beam instrumentations
- Beam Intercepting Devices
- Magnets
- Vacuum
- Power converters
- Radiation & shielding
- Radio Frequency
- Survey & alignment
- Integration
- Radiation WG
- MDI WG
- Arc mock-up WG
- System engineering and interface management

#### **Accelerator Design**

C. Carli, F. Zimmermann

- Parameters & performance, C. Carli & F. Zimmermann
- Optics design, K. Oide/UNIGE
- Correction & tuning, R. Tomas, J. Keintzel
- Alignment, J. Wenninger
- Energy calibration and polarisation, J. Keintzel & G.
   Wilkinson / Oxford
- Beam-beam, X. Buffat
- Impedance & collective effects, M. Migliorati / Sapienza & C. Zannini
- Electron cloud and ion effects, L. Mether
- Collimation & machine protection, R. Bruce & J. Uythoven
- MDI, M. Boscolo/INFN-LNF
- Booster, A. Chance
- Booster design WG
- EPOL WG
- Machine protection WG

#### **Transfer Lines Design**

W. Bartmann

- Optics
- Machine protection
- Interfaces

#### **Injector and TLs**

P. Craievich/PSI, A. Grudiev

- e-/e+ sources
- Linacs
- Damping ring

all Accelerator Design activities should have indico meeting sites inside the FCC indico structure!



EU Projects NN **FCC Feasibility Study** 

**Collaboration building** 

Emmanuel Tsesmelis

Communications

Panagiotis Charitos, Arnaud Marsollier

**Study Support and Coordination** 

Study Leader: Michael Benedikt
Deputy Study Leader: Frank Zimmermann

**Study Support Unit** 

IT: Sylvain Girod
Procurement: Adam Horridge
Quality management: Beatriz Arias
Resources: Sylvie Prodon
Secretariat: Julie Hadre

### Physics, Experiments and Detectors

Patrick Janot, Christophe Grojean

Physics programme

Matthew McCullough, Frank Simon

**Detector concept**Mogens Dam, ???

Physics performance

Patrizia Azzi, Emmanuel Perez

Software and computing Gerardo Ganis. NN

#### **Accelerators**

Tor Raubenheimer Frank Zimmermann

FCC-ee accelerator design

Christian Carli, Frank Zimmermann

FCC-ee technical implementation
Jean-Paul Burnet, Tor Raubenheimer

FCC-ee injector

Paolo Craievich, Alexej Grudiev

FCC transfer lines

Wolfgang Bartmann

FCC-hh design

Massimo Giovannozzi

#### **Technical Infrastructures**

Jean-Paul Burnet Klaus Hanke

Integration

Jean-Pierre Corso

Geodesy & survey

Hélène Mainaud Durand

Electricity and energy management

Jean-Paul Burnet

**Cooling and ventilation** 

Guillermo Peon

**Cryogenics systems** 

Laurent Delprat

Computing and controls infrastructure, communication and network

Pablo Saiz

Safety

Thomas Otto

Operation, maintenance, availability, reliability

Jesper Nielsen

Transport, installation concepts

Roberto Rinaldesi

### Host State processes and civil engineering

**Timothy Watson** 

Administrative processes

Friedemann Eder

**Placement studies** 

Johannes Gutleber

**Environmental evaluation** 

Johannes Gutleber

Tunnel, subsurface design

John Osborne

Surface sites layout, access and building design

A. Mayoux

### Organisation and financing models

Florian Sonnemann

Project organisation model

NN

Financing model

Florian Sonnemann

Procurement strategy and rules

Anders Unnervik

In-kind contributions

Anders Unnervik

Operation model

Verena Kain

## CIRCULAR FCC Feasibility Study – summary and outlook

- The first part of the FCC Feasibility Study has been completed with the mid-term review
  - placement & layout was defined, and entire project adapted to the new geometry
  - dialogue with local-regional actors and stakeholders for implementation established and ongoing
  - all deliverables met, list of recommendations from committees towards final Feasibility Study
- Next milestone is completion of the FCC Feasibility Study by March 2025 to enable advancing project decision and project start date.
- By 2027-2028, possible project approval, possible start of CE design contract
- By 2031-32, possible start of CE construction:
  - CE groundbreaking
  - TDR to enable prototyping, industrialization towards component production
- Challenging period ahead but hopefully significant resources from MTP 2024
- Many thanks for TE support and contributions!