ALICE-STAR India Collaboration Meeting

Event-by-event <*p*₇> fluctuations in identified particle in Pb-Pb collisions at 5.36 TeV

Sweta Singh Aligarh Muslim University

Under the supervision of Prof. Zubayer Ahammed Prof. Shakeel Ahmad

Motivation:

B. Albeve et al., ALICE Coll., Eur. Phys. J. C 74 (2014) 3077

 $\sqrt{C_m}$ / M(p_T) decreases with <dN_{ch}/dη> and follow a power law.

Eur. Phys. J. C (2014) 74:3077

Motivation:

ALI-PREL-526489

24/06/2024

https://alice-figure.web.cern.ch/node/24008

- EbyE M(p_τ) in Heavy-ion collisions are composed of statistical and dynamical contributions.
- Two particle transverse momentum correlator (C_m) is a measure of dynamical fluctuations.
- For Pb-Pb collisions, significant dynamical fluctuations as well as a strong decrease with multiplicity are observed.

Observable: Two particle correlator

• Two particle p_{τ} correlator using cumulant method:

$$\langle \nabla p_i \nabla p_j \rangle = \langle \frac{Q_1^2 - Q_2}{N_{ch}(N_{ch} - 1)} \rangle - \langle \frac{Q_1}{N_{ch}} \rangle^2$$

where,

$$\mathsf{Q}_1 = \sum_{i}^{Nch} pi$$

$$Q_2 = \sum_{i}^{Nch} pi * pi$$

https://alice-notes.web.cern.ch/node/1231

Analysis Details:

- **Dataset**: LHC23zzf_pass2
- System: Pb-Pb (5.36TeV)
- **Events**: 0.1M

Track selection criterion:

- Global Tracks()
- |η| < 0.8
- |y| < 0.5

24/06/2024

• $0.15 < p_{_T} < 2.0 \text{ GeV/c}$

https://alice-notes.web.cern.ch/node/1408

Events selection criterion:

- |Vz| < 10 cm
- Sel8()
- Centrality- FT0C
- One hit in any of the SPD layers required
- ITS refit required
- $\sim \chi^2$ / ITS cluster < 32
- atleast least 70 TPC clusters
- TPC refit required
- χ^2 / TPC cluster < 4
- reject kink daughters
- ✓ DCA_{xy} < 0.0182 cm</p>
- \sim DCA_z < 2 cm
- Global TPC $\chi 2 < 32$

before selection

after selection

5

10

15

24/06/2024

20

Z (cm)

$\boldsymbol{\eta}$ - distribution

p_{τ} - distribution

centrality

ITS X²/cluster

TPC X²/cluster

Number of crossed TPC rows

 $\mathrm{DCA}_{\mathrm{xy}} \, \mathrm{vs} \, \mathbf{p}_{\mathrm{T}}$

24/06/2024

1.5

10

PID Selection:

Pions,

Kaons

24/06/2024

 p_{τ} : [0.15, 0.65] GeV/c

$$\begin{array}{l} \checkmark \ \ track.hasTPC() \\ \checkmark \ \ |N_{\sigma TPC(\pi)}| < 2 \\ \cr \checkmark \ \ |N_{\sigma TPC(k)}| > 2 \ , \ |N_{\sigma TPC(p)}| > 2 \\ \cr \checkmark \ \ \ |N_{\sigma TPC(e)}| > 1 \end{array}$$

 p_{T} : [0.65, 2.0] GeV/c

- r track.hasTPC()
- r track.hasTOF()

$$|N_{\sigma TPC-TOF(\pi)}| < 2$$

$$|\mathsf{N}_{\sigma \text{TOF}(k)}| > 2 , |\mathsf{N}_{\sigma \text{TOF}(p)}| > 2$$

$$|\mathsf{N}_{\sigma \text{TPC-TOF}}| = (\mathsf{N}_{\sigma \text{TPC}}^2 + \mathsf{N}_{\sigma \text{TOF}}^2)^{1/2}$$

р_т: [0.4, 0.85] GeV/с

v track.hasTPC()
v IN ____l < 2</pre>

$$|N_{\sigma TPC(\pi)}| > 2 , |N_{\sigma TPC(k)}| > 2$$

$$|N_{\sigma TPC(k)}| > 1$$

р_т: [0.85, 2.0] GeV/с

- r track.hasTPC()
- r track.hasTOF()

$$|N_{\sigma TPC-TOF(p)}| < 2$$

$$|N_{\sigma TOF(\pi)}| > 2, |N_{\sigma TOF(k)}| > 2$$

$$|N_{\sigma TOF(k)}| > 2 = (N^{2} + N^{2})^{1/2}$$

$$N_{\sigma TPC-TOF} = (N_{\sigma TPC}^2 + N_{\sigma TOF}^2)^{2}$$

Protons

before selection

after selection

before selection

after selection

13

$N_{\sigma TPC}$ vs p_{τ} for identified particles:

$N_{\sigma TOF}$ vs p_{τ} for identified particles:

$N_{\sigma TOF}$ vs $N_{\sigma TPC}$ for identified particles:

η - distribution for all species:

η allcharge

η pion

24/06/2024

n kaon

n proton

17

p_{τ} distribution for identified particles:

p_{τ} allcharge

p_{τ} pion

y-distribution for identified particles:

Mean p_{τ} as a function of N_{acc}:

<u>24/06/2024</u>

$$\begin{split} \mathsf{M}(\boldsymbol{p}_{T})_{\mathrm{p}} &> \mathsf{M}(\boldsymbol{p}_{T})_{\mathrm{allcherge}} \\ \mathsf{M}(\boldsymbol{p}_{T})_{\mathrm{k}} &< \mathsf{M}(\boldsymbol{p}_{T})_{\mathrm{allcherge}} \\ \mathsf{M}(\boldsymbol{p}_{T})_{\mathrm{\pi}} &< \mathsf{M}(\boldsymbol{p}_{T})_{\mathrm{allcherge}} \end{split}$$

- errors are calculated using subsample method.
- errors are too small to be visible.
- N_{acc} : number of accepted particles

Two particle correlator as a function of N_{acc}:

- For clarity sake this plot is shown over log scale.
- A sharp decrease in lower multiplicity can be seen for p and k.

MC Study

22

Analysis Details:

- MC Dataset: LHC23k6e_apass2
- System: Pb-Pb (5.36TeV)
- Events: ~ 26202

Events selection criterion:

- |Vz| < 10 cm
- Sel8()

24/06/2024

Track selection criterion:

- Global Tracks()
- |η| < 0.8, |y| < 0.5

- One hit in any of the two ITS layers required
- ITS refit required
- $\sim \chi^2$ / ITS cluster < 36
- atleast least 70 TPC crossed rows
- atleast least 80% TPC crossed rows over TPC findable cluster ratio
- TPC refit required
- χ^2 / TPC cluster < 4
- DCA_{xy} < 0.0105 cm
- \sim DCA_z < 2 cm
- Global TPC $\chi 2 < 32$

• $0.15 < p_{\tau} < 2.0 \text{ GeV/c}$ Victor Gonzalez: https://alice-notes.web.cern.ch/node/1408

Analysis Details:

PileUp Rejection:

- **KNoSameBunchPileup:** rejects collisions which are associated with the same "found-by-T0" bunch crossing.
- KNoITSROFrameBorder: reject more events affected by the ITS ROF border.
- **KIsGoodZvtxFT0vsPV:** rejects collisions with large difference between z of PV by tracks and z of PV from FT0 A-C time difference.
- **KIsVertexITSTPC:** atleast one ITS-TPC track.

Track Selection:

V_z distribution:

Generated MC

Reconstructed MC

26

PID Selection:

Electron Rejection :

$$-3 < N_{\sigma TPC(e)} < 3, |N_{\sigma TPC(\pi)}| > 3, |N_{\sigma TPC(k)}| > 3, |N_{\sigma TPC(p)}| > 3$$

PID Selection:

Pion	Kaon	Proton
<i>р</i> < 0.7 GeV/с	ρ < 0.7 GeV/c	<i>P</i> < 1.1 GeV/c
 track.hasTPC() $N_{\sigma TPC(\pi)} < 2.5$ $N_{\sigma TPC(k)} > 3$, N_{σTPC(p)} > 3 	$ \begin{array}{l} \checkmark \ \ track.hasTPC() \\ \checkmark \ \ N_{\sigma TPC(k)} < 2.5 \\ \cr \checkmark \ \ \ N_{\sigma TPC(m)} > 3 \ , \ N_{\sigma TPC(p)} > 3 \end{array} $	$ \begin{array}{l} \checkmark \ \ track.hasTPC() \\ \checkmark \ \ N_{\sigma TPC(p)} < 2.5 \\ \cr \checkmark \ \ \ N_{\sigma TPC(k)} > 3 \ , \ N_{\sigma TPC(\pi)} > 3 \end{array} $
<i>p</i> >= 0.7 GeV/c	<i>p</i> >= 0.7 GeV/c	<i>P</i> >= 1.1 GeV/c
<pre>r track.hasTPC(), track.hasTOF()</pre>	<pre>r track.hasTPC(), track.hasTOF()</pre>	<pre>r track.hasTPC(), track.hasTOF()</pre>
• -2.5, -3.0 < $ N_{\sigma TPC-TOF(\pi)} $ < 2.5, 3.0 $ N_{\sigma TPC-TOF(\pi)} $ = $((N_{\sigma TPC})^2 / (2.5)^2 + (N_{\sigma TOF})^2 / (3.0)^2)^{1/2}$	• -2.5, -3.0 < $ N_{\sigma TPC-TOF(k)} $ < 2.5, 3.0 $ N_{\sigma TPC-TOF(k)} = ((N_{\sigma TPC})^2 / (2.5)^2 + (N_{\sigma TOF})^2 / (3.0)^2)^{1/2}$	• -2.5, -3.0 < $ N_{\sigma TPC-TOF(p)} $ < 2.5, 3.0 $ N_{\sigma TPC-TOF(p)} = ((N_{\sigma TPC})^2 / (2.5)^2 + (N_{\sigma TOF})^2 / (3.0)^2)^{1/2}$
• $ N_{\sigma TPC-TOF(k)} > 3$, $ N_{\sigma TPC-TOF(p)} > 3$ • $N_{\sigma TPC-TOF} = (N_{\sigma TPC}^2 + N_{\sigma TOF}^2)^{1/2}$	• $ N_{\sigma TPC-TOF(\pi)} > 3$, $ N_{\sigma TPC-TOF(p)} > 3$ • $N_{\sigma TPC-TOF} = (N_{\sigma TPC}^2 + N_{\sigma TOF}^2)^{1/2}$	• $ N_{\sigma TPC-TOF(k)} > 3$, $ N_{\sigma TPC-TOF(\pi)} > 3$ • $N_{\sigma TPC-TOF} = (N_{\sigma TPC}^2 + N_{\sigma TOF}^2)^{1/2}$
24/06/2024		40

before selection

after selection

before selection

after selection

$N_{\sigma TPC}$ vs *p* for identified particles:

After PID selection

$N_{\sigma TOF}$ vs *p* for identified particles:

After PID selection

$N_{\sigma TOF}$ vs $N_{\sigma TPC}$ for identified particles:

Before PID selection

$N_{\sigma TOF}$ vs $N_{\sigma TPC}$ for identified particles:

After PID selection

Efficiency plot:

Purity plot:

Mean p_{τ} as a function of N_{acc}:

Two particle correlator as a function of N_{acc} :

- To work on higher statistics.
- To work on better purity and efficiency correction for MC data.

Thank You