Υ (nS) polarization measurements in pp collisions at \sqrt{s} = 13.6 TeV with ALICE

ALICE-STAR India Collaboration Meeting IOP Bhubaneswar 25th May 2024

Kshitish Kumar Pradhan

Supervisor: Prof. Raghunath Sahoo Indian Institute of Technology Indore, India email: Kshitish.Kumar.Pradhan@cern.ch

- Quarkonium polarization
- Physics motivation
- Analysis
- Summary

Introduction

- Polarization can be defined as the alignment of particle spin to a given quantization axis
- Polarization measurements can help to understand the particle production mechanisms
- It can be measured by analyzing the angular distribution of the decay products
- Frames of reference: Z_{HF} Helicity frame 1. Z_{GJ} **Collins-Soper frame** 2. J/ψ rest frame: ZCS J/Ա Beam 1 Beam 2 |1, M > Quarkonium rest frame [P. Faccioli, DOI: 10.1007/978-3-031-08876-6] [Phys. Rev. C. 109, 034910 (2024)]

Production plane

Beam 2

frame

Collision center of mass

Quarkonia

Beam 1

Introduction

• The angular distribution can be parametrized as:

$$\frac{d^2N}{d\cos\theta \ d\phi} = \frac{3}{4\pi(3+\lambda_{\theta})}(1+\lambda_{\theta} \ \cos^2\theta + \lambda_{\phi} \ \sin^2\theta \ \cos^2\phi + \lambda_{\theta\phi} \ \sin^2\theta \ \cos\phi)$$

• As an alternative to a multi-parameter fit to the above relation, the one-dimensional angular distributions are used: $W(\cos \vartheta) \propto \frac{1}{(1 + \lambda_{2} \cos^{2} \vartheta)}$

$$W(\cos\vartheta) \propto \frac{1}{3+\lambda_{\vartheta}} \left(1+\lambda_{\vartheta}\cos^{2}\vartheta\right)$$
$$W(\varphi) \propto 1 + \frac{2\lambda_{\varphi}}{3+\lambda_{\vartheta}}\cos 2\varphi$$
$$W(\tilde{\varphi}) \propto 1 + \frac{\sqrt{2}\lambda_{\vartheta\varphi}}{3+\lambda_{\vartheta}}\cos\tilde{\varphi} \qquad \text{where}$$
$$\tilde{\varphi} = \begin{cases} \varphi - \frac{3}{4}\pi & \text{for } \cos\vartheta < 0, \\ \varphi - \frac{\pi}{4} & \text{for } \cos\vartheta > 0 \end{cases}$$

With the polarization parameters,

 $\begin{aligned} &(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (1, 0, 0) & \longrightarrow & \text{Transverse polarization} \\ &(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (-1, 0, 0) & \longrightarrow & \text{Longitudinal polarization} \\ &(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (0, 0, 0) & \longrightarrow & \text{Unpolarized state} \end{aligned}$

Frame Invariant variable:
$$\tilde{\lambda} = \frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 - \lambda_{\phi}}$$

[Eur. Phys. J. C. 69, 657 (2010)]

Introduction

- The production mechanism of heavy Quarkonium (like \gtrsim J/ ψ) helps to study the QCD dynamics in vacuum and in medium
- Theoretical models like non-relativistic QCD (NRQCD) are developed in an attempt to explain their production
- Calculations based on color-octet model show good agreement with experimental data on production cross sections for charmonium states
- However, it fails to describe the spin-alignment
- NRQCD calculations based on color-octet components predict transverse polarization for J/ ψ , while next-to-leading order color-singlet calculations predicts a longitudinal polarization
- Experimental results are also far from a single conclusive idea

[Eur. Phys. J. C. 73, 2631 (2013)]

Upsilon Polarization

- Being massive the $b\overline{b}$ system should satisfy the nonrelativistic approach much better than the charmonium states
- However, there are wide ranges of experimental results
- $\Upsilon(1S)$ polarization data from Tevatron shows either no polarization (CDF) or longitudinal polarization (DØ)
- At low energy and p_T (E866 Expt.), Υ (2S) and Υ (3S) states have maximal transverse polarization
- However, Υ(1S) is found to be weakly polarized

[Phys. Rev. Lett. 101, 182004 (2008)]

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

0

8 O

Upsilon Polarization

• The polarization of $\Upsilon(1S)$, $\Upsilon(2S)$, LHCb LHCb LHCb LHCb $0.2 \vdash \sqrt{s} = 7 \,\mathrm{TeV}$ $\sqrt{s} = 8 \,\text{TeV}$ $\sqrt{s} = 7 \,\mathrm{TeV}$ $\sqrt{s} = 8 \,\mathrm{TeV}$ 0 and $\Upsilon(3S)$ measured in LHCb and λ_{θ} CMS experiments observed no -0. significant polarization • HX frame • HX frame -0.2CS frame CS frame $\Upsilon(1S)$ $\Upsilon(1S)$ ◆ GJ frame ◆ GJ frame 0.1 Y(1S) Y(2S) Y**(3S)** λ. -0 (√s = 7 TeV L = 4.9 fb⁻ HX frame, |y| < 0.6 Stat. uncert., 68.3 % CL Tot. uncert., 68.3 % CL Tot. uncert., 95.5 % CL Tot. uncert., 99.7 % CL Y(1S) Y(2S) Y(3S) -0.1F 0.4 $\Upsilon(2S)$ 0.2 λ_{ϕ} 0.1 -0.2 -0.4 0.05 Y(1S) Y(2S) Y(3S) 0.4 0 0.2 -0.05 $\lambda_{\vartheta\phi}$ -0.2 -0.1 -0.4 $\Upsilon(3S)$ 25 25 10 15 20 25 30 35 40 45 10 15 20 25 30 35 40 45 10 15 20 25 30 35 40 45 5 10 15 20 15 20 5 10 5 10 15 25 5 25 20 10 15 20 p_{_} [GeV] p_{_} [GeV] p_{_} [GeV] $p_{\mathrm{T}}^{\Upsilon}$ [GeV/c] $p_{\mathrm{T}}^{\Upsilon}$ [GeV/c] $p_{\mathrm{T}}^{\Upsilon}$ [GeV/c] $p_{\mathrm{T}}^{\Upsilon}$ [GeV/c]

[PRL 110, 081802 (2013)]

[JHEP 12, 110 (2017)]

Upsilon Polarization

Motivation:

- The polarization analysis for all the three states of $\Upsilon(nS)$ will be first in ALICE for available statistics in Run3 data
- This can testify the NRQCD prediction if feeddown effect can dilute the polarization of lower states
- A comparison with the existing LHCb results

Detector-Muon Spectrometer

 To study the quarkonium decaying to dimuons

[ALICE Muon Spectrometer]

• Acceptance $-4.0 < \eta < -2.5$

Plan of action:

- Selection of the muon track candidates by using the task table-maker
- Then further selection on muon pairs by using table-reader task to build dimuon observables
- Extract the opposite sign dimuon ($\mu^+\mu^-$) invariant mass spectra
- Perform the same in different p_T bins
- Extract the $\cos\theta$ and ϕ distributions in the selected p_T bins
- Perform the fitting of angular distribution to obtain polarization parameters
- Study these polarization parameter as a function of p_T

Analysis

- Dataset: LHC23_pass4_skimmed_QC1 (Data)
- Event Selection: $|Vtx_z| < 10 \text{ cm}$ (eventStandardNoINT7)
- Muon track selection criteria:

muonQualityCuts

- Track within the muon spectrometer acceptance, rapidity cuts: -4.0 < y < -2.5
- Dimuon pairs within the pseudo-rapidity -4.0 < $\eta_{\mu\mu}$ < -2.5
- Total charge of the pair = 0
- To reduce the contamination by tracks crossing the thicker part of the absorber, cuts on the radial transverse position of muon tracks: 17.6 < *R*_{*abs*} < 89.5 cm

Entries: 1.18182e+06

Hyperloop link

Fitting Function

To fit the signal:

• The standard signal function is a double Crystal Ball (CB2) defined as

$$f(x; \mu, \sigma, \alpha_L, n_L, \alpha_R, n_R, N) = N \times \begin{cases} \exp(-0.5v^2), & \text{if } v > -\alpha_L \& v < \alpha_R \\ A \times (B - v)^{-n_L}, & \text{if } v \le -\alpha_L \\ C \times (D + v)^{-n_R}, & \text{if } v \ge \alpha_R \end{cases}$$
where,
$$v = (x - \mu)/\sigma$$

$$A = \left(\frac{n_L}{|\alpha_L|}\right)^{n_L} \times \exp(-0.5\alpha_L^2)$$

$$B = \frac{n_L}{|\alpha_L|} - |\alpha_L|$$

$$C = \left(\frac{n_R}{|\alpha_R|}\right)^{n_R} \times \exp(-0.5\alpha_R^2)$$

$$D = \frac{n_R}{|\alpha_R|} - |\alpha_R|$$

To fit the Background:

• The background is fitted with a variable width Gaussian function

$$f_{\rm bkg}(x;N_B,\alpha,\beta,\gamma) = N_B \exp\left[-\frac{1}{2}\left(\frac{x-\alpha}{\sigma}\right)^2\right]$$
 with $\sigma = \beta + \gamma \frac{x-\alpha}{\alpha}$

Fitting Function

- Signal fitting function: Double Crystal function
- Background: Variable Width Gaussian function
- Fitting procedure
 - For now, the tail parameters $(n_L, \alpha_L, n_R, \alpha_R)$ are fixed from MC data at \sqrt{s} =13 TeV
 - Three Double Crystal functions for each $\boldsymbol{\Upsilon}$ state
 - Mass of Υ(1S) is kept free
 - Sigma of Y(1S) is kept free
 - Fitting Range:
 - $M_{\mu^+\mu^-} = 6.0 13.0 \ GeV/c^2$

$$m_{\Upsilon(nS)} = m_{\Upsilon(1S)} + (m_{\Upsilon(nS)}^{PDG} - m_{\Upsilon(1S)}^{PDG})$$

$$\sigma_{\Upsilon(nS)} = \sigma_{\Upsilon(1S)} \times \frac{\sigma_{\Upsilon(nS)}^{MC}}{\sigma_{\Upsilon(1S)}^{MC}}$$

	Simulations at 13 TeV		
$lpha_L$	1.0242		
n_L	2.0000		
α_R	2.0711		
n_R	2.2565		

Signal

- Dataset used: LHC23_pass4_skimmed_QC1
- In the whole p_T range: 0.0 < p_T <30.0 GeV/c
- The fitting is converged and χ^2/N_{dof} is good

Signal

p_T bins (GeV/c)	No. of $\Upsilon(1S)$	No. of $\Upsilon(2S)$	No. of $\Upsilon(3S)$
0-3	623.36 <u>+</u> 50.9	123.53±45.62	44.29±38.14
3-10	1062.92±68.45	228.42 <u>+</u> 66.68	184.08 <u>+</u> 57.17
10-20	317.06 <u>+</u> 62.67	56.06±58.91	17.00±41.61

- Need more statistics to have a good signal for all the states and to have angular distributions
- Looking for more datasets

- The polarization analysis can improve our understanding of the production mechanism of heavy quarkonium
- Polarization of $\Upsilon(nS)$ can possibly explain the feed-down effect of the production/polarization if any
- To test more datasets to gather more statistics for all the Υ states
- Then to study the polarization parameters from the $\cos\theta$ and ϕ distributions

THANK YOU

Backup

Analysis

• Dataset: LHC22o_pass4_minBias_medium

- <u>Maker</u> -processMuonOnlyWithMult -cfgEventCuts:
- eventStandardNoINT7
- -cfgMuonCuts: muonQualityCuts
- -cfgPropMuon: 1

<u>Reader</u>

-cfgMuonCuts: muonQualityCuts (hyperloop-link)

- <u>Maker</u>
- -processMuonOnlyWithMult -cfgEventCuts:
- eventStandardNoINT7
- -cfgMuonCuts: muonQualityCuts
- -cfgPropMuon: 0
- <u>Reader</u>

-cfgMuonCuts: MatchedMchid (<u>hyperloop-link</u>)