

ALICE-STAR India Collaboration Meeting Institute of Physics Bhubaneswar

Heavy Flavour Electron-Hadron Correlation in pp Collisions at $\sqrt{s} = 13.6$ TeV with ALICE

Rashi Gupta Indian Institute of Technology Indore

Supervisor: Prof. Ankhi Roy

25 June 2024

< □ > < (四 > < (回 >) < (u >

Physics Motivation	ALICE Detector	Analysis Strategy 000000	Results 0000	Summary and Outlook

Outline

- Physics Motivation
- ALICE Detector
- Analysis Strategy
 - Heavy Flavour Electron-Hadron Correlation
 - Track and Cluster Matching
 - Electron Identification
- Results
- Summary and Outlook

Physics Motivation •00	ALICE Detector	Analysis Strategy 0000000	Results 0000	Summary and Outlook

- Charm and beauty quarks (c,b) are produced in the initial hard scattering processes at the early stages of the collision
- $\blacktriangleleft m_{\rm c,b} >> \Lambda_{\rm QCD}$
- Excellent probes of QGP due to their early production

イロト 不同 とうほう 不同 とう

3/31

Physics Motivation 0●0	ALICE Detector	Analysis Strategy 0000000	Results 0000	Summary and Outlook

- Heavy flavours can be reconstructed from ground state charm hadron decays or via semi-leptonic decays
 - $D^0(c\bar{u}) \rightarrow K^- + \pi^+ (\text{BR} \approx 3.88\%)$
 - $B, D \rightarrow e(\mu) + \bar{\nu} + X (BR \approx 10\%)$
- HF production in different collision systems
 - pp collisions
 - Test for pQCD calculations
 - Baseline for heavy-ion collisions (p-Pb, Pb-Pb)
 - p–Pb collisions
 - Cold nuclear matter (CNM) effects
 - Pb–Pb collisions
 - Modification due to the interaction with the Quark Gluon Plasma (QGP).

Physics Motivation	ALICE Detector	Analysis Strategy 0000000	Results 0000	Summary and Outlook

- High p_T heavy quarks produced in these collisions produce directed spray of particles called as jets
- $\Delta \phi$ distribution of charged particles

$$\Delta \phi = \phi_{\rm trigger} - \phi_{\rm associated}$$

- Azimuthal angular correlation of heavy flavour electrons (HFe) with charged-particles provide insight into:
 - Heavy quark production
 - Fragmentation and hadronization of heavy quarks

Physics Motivation	ALICE Detector ●○○	Analysis Strategy 0000000	Results 0000	Summary and Outlook

Inner Tracking System (ITS)

- $|\eta| < 0.9$
- $\P \quad 0^\circ < \phi < 360^\circ$
- Vertexing
- Tracking
- Particle Identification

Physics Motivation	ALICE Detector 0●0	Analysis Strategy 0000000	Results 0000	Summary and Outlook

Time Projection Chamber (TPC)

- $|\eta| < 0.9$
- $\P \quad 0^\circ < \phi < 360^\circ$
- Tracking
- Momentum information
- Particle identification

Physics Motivation	ALICE Detector ○○●	Analysis Strategy 0000000	Results 0000	Summary and Outlook

Electromagnetic Calorimeter (EMCal, DCal)

- $|\eta| < 0.7, 0.22 < |\eta| < 0.7$
- 80° < ϕ < 187°, 260° <</p> ϕ < 320°</p>
- Energy measurement
- Particle identification

Heavy Flavour Elecrtron-Hadron Correlation

- Electron identification with TPC + EMCal (DCal) detectors
- $\Delta \phi$ distribution between HFe and charged particles is obtained as:

$$\Phi_{\rm HFe} = \frac{dN}{d\Delta\phi}$$

$$\Phi_{\rm HFe} = \Phi_{\rm Inclusive} - \Phi_{\rm Non-HFe}$$

• $\Delta \phi$ distribution for inclusive electrons is obtained as:

$$\Phi_{\mathsf{Inclusive}} = \Phi^{\mathsf{e}\mathsf{-}\mathsf{h}} - \Phi^{\mathsf{h}\mathsf{-}\mathsf{h}}$$

- $\Phi^{\rm e\text{-}h}$ is the electron hadron correlation
- Φ^{h-h} is the di hadron correlation

イロン 不同 とくほど 不良 とうせい

ALICE Detector

Analysis Strategy ○●○○○○○ Results 0000 Summary and Outlook

Datasets and Event/Track selection

Datasets used

Run3

- pp $\sqrt{s} = 13.6 \text{TeV}$ (LHC22o)
- ◀ Total no. of events 2.45B

Event selection

Trigger selection	Minimum bias (kINT7)
Contributors to primary vertex	≥ 2
Pileup rejection	sel8
Primary Z vertex range	\pm 10 cm

Track selection

Pseudo-rapidity	TPC (-0.8, 0.8), EMCAL (-0.6, 0.6)
Transverse momentum	$> 3.0~{\rm GeV/c}$
ITS refit, TPC refit	Yes
TPC crossed rows	> 70
Ratio crossed rows over findable clusters	> 0.8
Number of ITS clusters	> 2
χ^2 / clusters of the momentum fit in the TPC	< 4
Hits on SPD layers	kAny
DCA_{xy}	< 1 cm
DCAz	$< 0.5 \ { m cm}$

ALICE Detector Analysis Strategy Results

Ł

Track and Cluster Matching

 Tracks reconstructed from TPC and clusters from EMCal are matched by their track topology

•
$$|\Delta \phi| < 0.025$$
 and $|\Delta \eta| < 0.015$

Physics Motivation ALICE Detector Analysis Strategy Results Summary and Outlook

Cluster η and φ Distributions

Before track-cluster matching

After track-cluster matching

- Cluster η range
 - EMCal $|\eta| < 0.6$
 - DCal $0.22 < |\eta| < 0.6$

Cluster φ range
 EMCal 80° < φ < 180°
 DCal 260° < φ < 320°
 □ ▷ <
 □ ▷ <
 □ ▷ <
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷
 □ ▷

Analysis Strategy

Results

Summary and Outlook

Cluster Energy and Track Momentum Distributions

- Cluster energy is suppressed 99.15
 Track momentum is suppressed % after track-cluster matching
- 99.46 % after track-cluster matching

Physics Motivation 000	ALICE Detector	Analysis Strategy 00000€0	Results 0000	Summary and Outlook

Electron Identification

- Electrons are identified via their specific energy loss (dE/dx) in the TPC detector
- Due to large background at high momentum, combined identification of electrons from TPC and EMCal is performed

Physics Motivation	ALICE Detector	Analysis Strategy 000000●	Results 0000	Summary and Outlook

Electron Identification

- Electrons and hadrons deposit energy in EMCal
- Particles can be characterised based on the shower created in the EMCal
- *E*(energy) = Energy deposited to EMCal cluster
- *p*(Momentum) = Momentum of corresponding particle

Electron Identification criteria

$\sigma_{\mathrm{TPC-d}E/\mathrm{d}x}$	(-0.5, 3)]
Shower shape long	(0.02, 0.9)	
axis(M02)		
E/p	(0.8, 1.2)	
	Image: A matrix and a matrix	

3

ALICE Detector

Analysis Strategy

Results ●000 Summary and Outlook

√s = 13.6 TeV LHC22o

Inclusive Electron Hadron Correlation

Total number of events = 80M

- < $p_{
 m T}$ trigger $> p_{
 m T}$ associated
- $p_{\rm T}$ associated > 0.1 GeV/c

- Trigger particle ightarrow inclusive electron $\$ Near side peak at $\Delta \phi = 0$
- Associated particle ightarrow charged hadron Away side peak at $\Delta\phi=\pi$

Physics Motivation	ALICE Detector	Analysis Strategy 0000000	Results 0●00	Summary and Outlook
OOO	ALICE Detector	OCOCOCO	0€00	

Hadron-Hadron Correlation

- < $p_{\rm T}$ trigger $> p_{\rm T}$ assosiated
- $\blacktriangleleft~p_{\rm T}~{}_{\rm assosiated} > 0.1~{\rm GeV/c}$

- Trigger particle \rightarrow Charge hadron
- Associated particle \rightarrow Charge hadron

Near side peak at Δφ = 0
Away side peak at Δφ = π

Physics Motivation ALICE Detector Analysis Strategy Results Sur 000 000000 00000 00000 000000 00000000	ummary and Outlook
---	--------------------

Non-HFe Hadron Correlation

- Dalitz decay and photon conversion process contribute to non HFe
 - $\pi^0 \rightarrow \gamma + e^- + e^+$

•
$$\eta \rightarrow \gamma + e^- + e^+$$

•
$$\gamma \rightarrow e^- + e^+$$

- Non-HFe are reconstructed via their using invariant mass calculation
 - $\Phi_{\text{Non HFe}} = (\Phi_{\text{ULSE}} \Phi_{\text{LSE}})_{M_{e^+e^-} < 0.14 \ GeV/c^2}$
- For finding the electron pair a loose $\sigma_{\rm TPC-dE/dx}$ (-3, 3) cut is applied to increase the efficiency of electron identification

イロト イヨト イヨト イヨト

18/31

Mixed Event HFe-Hadron Correlation

- To remove pair acceptance and uncorrelated pairs due to detector inhomogeneity
- These effects can be evaluated and corrected for by using the $\Delta\phi, \Delta\eta$ distributions from mixed events
- In mixed event distribution electron and hadron coming from different event
- The same event distributions are corrected as:

$$\frac{d^2 N^{\text{pair}}}{d\Delta\eta d\Delta\phi} = \beta \times \frac{S_{SE}(\Delta\eta, \Delta\phi)}{B_{ME}(\Delta\eta, \Delta\phi)}$$
$$S_{SE}(\Delta\eta, \Delta\phi) = \frac{d^2 N^{\text{same}}}{d\Delta\eta d\Delta\phi}$$
$$B_{ME}(\Delta\eta, \Delta\phi) = \frac{d^2 N^{\text{mix}}}{d\Delta\eta d\Delta\phi}$$

 β is the normalization yield for mixed events

Physics Motivation ALICE Detector Analysis Strategy Results Summary and Ou	utlook
000 000 0000 0000 0000 0000 0000	0

Summary and Outlook

Summary

- Inclusive electron-hadron correlation
- Mc reconstruction electron-hadron correlation
- Mixed event inclusive electron-hadron correlation
- Like and Unlike sign electron-hadron correlation
- Electron selection task is committed to O2Physics repository
- Results are presented in ALICE collaboration physics analysis group for heavy flavor correlations (PAG-HFL and HFC) meeting
 - https://indico.cern.ch/event/1380066/
 - https://indico.cern.ch/event/1303169/
- Outlook
 - Implement identification of HF electrons.
 - HFe hadron correlation task implementation and offline task

Physics Motivation	ALICE Detector	Analysis Strategy 0000000	Results 0000	Summary and Outlook ○●○○○○○○○○○○

Thank you for your attention

Physics Motivation	ALICE Detector	Analysis Strategy	Results 0000	Summary and Outlook

Backup

Backup Slide

ALICE Detector

Analysis Strategy

Results 0000 Summary and Outlook

Mixed event Inclusive Electron Hadron Correlation

- < $p_{
 m T}$ trigger $> p_{
 m T}$ associated
- $p_{\rm T}$ associated $> 0.1~{\rm GeV/c}$

- ▲ Trigger particle →Inclusive electron
- Associated particle \rightarrow Charge hadron

ALICE Detector

Analysis Strateg

Results 0000 Summary and Outlook

Mixed Event Hadron-Hadron Correlation

- < $p_{\rm T}$ trigger $> p_{\rm T}$ associated
- $\blacktriangleleft p_{\rm T} \text{ associated} > 0.1 ~{\rm GeV/c}$

- Trigger particle \rightarrow Charge hadron
- Associated particle \rightarrow Charge hadron

Analysis Strategy

Results

Summary and Outlook

MC Reco Inclusive Electron Hadron correlation

Total number of events = 10M

 $p_{\rm T}$ trigger > $p_{\rm T}$ associated

• $p_{\rm T}$ associated > 0.1 GeV/c

- Trigger particle \rightarrow Inclusive electron
- Associated particle \rightarrow Charge hadron

Near side peak at $\Delta \phi = 0$

 Away side peak at $\Delta \phi = \pi$ イロト イヨト イヨト イヨト

3

ALICE Detector

Analysis Strategy

Results 0000 Summary and Outlook

MC Reco Hadron Hadron Correlation

- < $p_{\rm T}$ trigger $> p_{\rm T}$ associated
- $p_{\rm T}$ associated $> 0.1~{\rm GeV/c}$

- Trigger particle \rightarrow Charge hadron
- Associated particle \rightarrow Charge hadron

Physics Motivation	ALICE Detector	Analysis Strategy 0000000	Results 0000	Summary and Outlook

TPC

Physics Motivation	ALICE Detector	Analysis Strategy 0000000	Results 0000	Summary and Outlook

ITS

Physics Motivation	ALICE Detector	Analysis Strategy 0000000	Results 0000	Summary and Outlook

EMCAL

29/31

Physics Motivation	ALICE Detector	Analysis Strategy 0000000	Results 0000	Summary and Outlook ○00000000000000

Fragmentation

Physics Motivation ALICE Detector Analysis Strategy Results Summary and Ot 00000000000000000000000000000000000	itlook
--	--------

Heavy Quark Production

