

RUN3

Multiplicity Dependent Λ(1520) Production in pp Collisions in ALICE

Hirak Kumar Koley

Jadavpur University <u>hirak.koley@cern.ch</u>

Supervisor: Prof. Mitali Mondal

ALICE-STAR India Collaboration Meeting, **2024** 25 June 2024

Outline

- Motivation
- Analysis Method
 - Data samples and event selection
 - Track selection and PID selection
 - Signal extraction (inv. mass, fit, fit parameters)
 - Correction: Acceptance x Efficiency
- Normalised Spectra
- Summary and Outlook

Primary goal of ALICE is to study QGP: a state of quasi-free partonic medium formed at extreme high temperature and density in heavy-ion collisions

Hadronic resonances (ρ^0 , ϕ , Λ^* , K^{*0} , Σ^* , Ξ^* etc.) have lifetimes of the order of fm/c

 $\tau_{\text{resonance}} \sim \tau_{\text{fireball}}$

Hadronic resonances are good candidates to probe the various stages of the evolution of the QCD fireball and the properties of the strongly-coupled QCD matter

Lifetime (fm/c): $\rho(1.3) < K^{*0}(4.2) < \Sigma^{*}(5.5) < \Lambda^{*}(12.6) < \Xi^{*}(21.7) < \phi(46.2)$

Hadronic Resonances

Measured resonance yield is affected by hadronic processes after chemical freeze-out: Re-scattering phenomena: Elastic scattering or pseudo-elastic scattering \rightarrow Reduction of the resonance yield

Regeneration phenomena: Pseudo-elastic scattering

 \rightarrow Enhancement of the resonance yield

Final resonance yields depend on:

- Chemical freeze out temperature
- Lifetime of hadronic phase
- Resonance lifetimes
- Scattering cross sections of decay products

Motivation for Choosing $\Lambda(1520)$

• Lifetime of $\Lambda(1520)$ resonance ($\tau \sim 12.6$ fm/c) is longer than K^{*0}(892) meson ($\tau \sim 4.16$ fm/c) but shorter than the ϕ (1020) meson ($\tau \sim 46.3$ fm/c)

ALICE-STAR India Collaboration Meeting, 2024

Motivation for Choosing $\Lambda(1520)$

Lifetime of Λ(1520) resonance (τ ~ 12.6 fm/c) is longer than K^{*0}(892) meson (τ ~ 4.16 fm/c) but shorter than the φ (1020) meson (τ ~ 46.3 fm/c)
Previous measurements show that the yield of K^{*0}(892) is found to be suppressed also in small system, whereas φ(1020) meson is not suppressed

ALICE-STAR India Collaboration Meeting, 2024

Motivation for Choosing $\Lambda(1520)$

- Lifetime of Λ(1520) resonance (τ ~ 12.6 fm/c) is longer than K^{*0}(892) meson (τ ~ 4.16 fm/c) but shorter than the φ (1020) meson (τ ~ 46.3 fm/c)
- Previous measurements show that the yield of K^{*0}(892) is found to be suppressed also in small system, whereas \$\phi(1020)\$ meson is not suppressed
- Makes Λ(1520) resonance an optimal probe to set an upper limit to the lifetime of the hadronic phase.

Motivation for Analysing Run3 data

ALICE Preliminar

P-Pb, √s_{NN} = 5.02 TeV pp, √s = 13 TeV pp, √s = 5.02 TeV

Pb-Pb, $\sqrt{s_{_{
m NN}}}$ = 2.76 TeV Pb-Pb, Vs_{NN} = 5.02 TeV

STAR, VS. = 200 GeV

⊓d-Au ≿≾Au-Au

pp, √s = 7 TeV

MUSIC+SMASH

γ -CSM

MUSIC (SMASH off)

~0.15

0.1

A(1520)

- Enables differential resonance studies Ο (eg. resonance flow, correlation study)
- Yield measurements as initial confirmation for Ο the analysis framework

Hirak Kumar Koley, JU ALICE-STAR India Collaboration Meeting, 2024

Data Samples and Event Selection

- pp 13.6 TeV
 - **Data set:** LHC22o_pass6_minBias_small Accepted events: ~ 2.5B
 - MC: LHC23f3b

~400k events (unanchored resonance injected MC)

- Anchored reproduction: <u>Ongoing</u> QA has issues
- Event selection: sel8(), $|V_z| < 10$ cm

Track Selection and PID Selection

• Track and PID selections

Hirak Kumar Koley, JU

ALIC

Selection Criteria	Λ(1520)
isGlobalTrack() kQualityTracks kPrimaryTracks kInAcceptanceTracks	6
DCA _{xy}	< 0.1 cm
DCA _z	< 0.1 cm
nTPCXrows > 70	6
p _T > 0.15 GeV/c	6
η < 0.8	6
y _{pair} < 0.5	6
σ _{TPC} < 2.0	for K upto 0.5 GeV/c for p upto 0.8 GeV/c
$ \sigma_{TOF} < 2.0$ $ \sigma_{TPC} < 3.0$ as VETO if hasTOF()	for K upto 5 GeV/c for p upto 8 GeV/c

TPC-TOF nσ map of Λ(1520) daughters

Analysis Details

- **Invariant mass distribution** from **p+K** unlike-sign pair.
- Background:
 - Mixed-event
- **p**_T intervals:
 - $\circ \quad [0.6,\, 0.8,\, 1.0,\, 1.2,\, 1.4,\, 1.6,\, 1.8,\, 2.0,\, 3.0,\, 3.5,\, 4.0,\, 5.0,\, 6.0]$
- Fit:
 - Voigtian + 3rd order polynomial
- Mixed-event bkg.:
 - \circ Number of Event mixing = 5, Difference in |Vz| < 1 cm, in FT0M Multiplicity bin < 10%

Signal Extraction: Invariant Mass Distribution

- Examples of invariant mass distribution
- Fit with fixed signal widths (PDG value)
 - Voigtian + 3rd order polynomial

Signal Extraction: Fit Parameters

- **Fit mean:** at lower p_T bin shifted: Similar behaviour with the Run 2
 - Line: PDG value
- Raw yields:
 - Extracted from the bin counting method.
 - Fit width is fixed to the PDG value.

Reconstruction Efficiency

- Acceptance x Efficiency = Number of reconstructed $\Lambda(1520)$ decays to p+K using analysis acceptance and cut / Number of generated $\Lambda(1520)$ in |y| < 0.5
- Used MC:

Hirak Kumar Koley, JU

• Resonance injected MC (LHC23f3a)

Normalised *p*_T Spectra (MB)

Hirak Kumar Koley, JU

ALIC

Normalised $p_{\rm T}$ Spectra (INEL > 0)

Normalised spectra

• Hardening of spectra is observed

Summary and Outlook

- Summary:
 - Signal Extraction has been done <u>Performance plot</u> approved for 13.6 TeV.
 - \circ Yield extraction has been done for INEL > 0 events.

Analysis Note: https://alice-notes.web.cern.ch/node/1449

- Outlook:
 - Finalisation of anchored MC production
 - Wrap up the study for preliminary.

