

Production of light nuclei in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 7.7 and 27 GeV at RHIC-STAR

Sibaram Behera

Supervisor : Dr. Chitrasen Jena

Indian Institute of Science Education and Research (IISER), Tirupati

ALICE-STAR India Collaboration Meeting

24th - 27th June, 2024

Institute of Physics, Bhubaneswar

Previously presented:

https://indico.cern.ch/event/1329196/contributions/5665364/attachments/2756905/4803916/Updated_sibaram_ALICE_STAR_India_Colla_Nov_2023.pdf

2

- Introduction
- The STAR experiment
- Analysis details
 - Data set, event, and track selection
 - Particle identification
 - Signal extraction
- Corrections
- Results
- Summary
- Outlook

Introduction

- Goal of heavy-ion collision experiment is to
 explore QCD phase diagram
- **QGP** to **Hadronic matter** -> continuous at

low μ_{B} and 1st order at higher μ_{B} (by QCD)

Search for **Critical Point (CP)** in phase

diagram

Choice of observable : Compound light nuclei ratio $rac{N_t imes N_p}{N_d^2} \propto (1+\Delta n)$

Beam Energy Scan program (BES-I) collider mode : 7.7, 9.1, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV

Introduction

STAR, Phys. Rev. Lett. 130 202301 (2023)

Deviation from baseline is 4.1 sigma

Light nuclei yields and ratios could

provide a probe to search for signature

of critical phenomena

Beam Energy Scan program (BES-II) collider mode : 7.7, 9.2, 11.5, 14.6, 17.3, 19.6 GeV

Sibaram Behera ALICE-STAR India Collaboration Meeting 24th - 27th June, 2023

5

- Solenoidal Tracker at RHIC (STAR)
 is one of the large detector systems at RHIC consisting of several
 sub-detectors
- Time Projection Chamber (TPC) and
 Time of Flight (TOF) are two
 sub-detectors used for particle
 identification at STAR

J. Phys. Conf. Ser. 742 012022 (2016)

The upgrade to iTPC provides better momentum resolution, better dE/dx resolution, and improved acceptance at high rapidity (|η| < 1.5)</p>

Pseudo-rapidity : $\eta = -\ln \tan \frac{\theta}{2}$

Au+Au, $\sqrt{s_{_{\rm NN}}}$ = 7.7 GeV

Trigger setup: production_7p7GeV_2021

Data file: picoDst

Stream: st_physics

Trigger selection: 810010,

810020, 810030, 810040

Production tag: P22ib

Number of Events ~ 52.5 M

Au+Au, √s_{NN} = 27 GeV

Trigger setup: 27GeV_production_2018

Data file: picoDst

Stream: st_physics

Trigger selection:

 $610001,\ 610011,\ 610021,\ 610031,$

610041

Production tag: P19ib

Number of Events ~ 267 M

Event Selection:

Cuts (27 GeV)	Value
$ \mathbf{v}_{\mathbf{z}} $	≤ 70 (40) cm
v _r	≤ 2 cm

Cuts (27 GeV)	Value			
nHitsFit	≥ 25 (20)			
nHitsdEdx	≥ 15 (10)			
nHitsFit/nHitsPoss	≥ 0.52			
DCA	< 1 cm			
p _T (GeV/c)	≥ 0.2			
y (d)(t)(³He)	< (0.3) (0.5) (0.5)			

PID using TPC and TOF

Sibaram Behera ALICE-STAR India Collaboration Meeting 24th - 27th June, 2023

PID using **dE/dx** information from **TPC** at

low p_T

$$Z = ln(rac{< dE/dx>}{< dE/dx>_{theory}})$$

Nucl. Instrum. Meth. A 562 154-197 (2006)

□ **PID** using m^2/q^2 information from **TOF** at intermediate p_T

$$rac{m^2}{q^2} = p^2 (1/eta^2 - 1)$$

Signal extraction from TPC and TOF

Energy loss correction

Fit function:
$$f(p_T)=a_1+a_2(1+rac{a_3}{p_T^2})^{a_4}$$

Sibaram Behera ALICE-STAR India Collaboration Meeting 24th - 27th June, 2023

TPC track efficiency and Absorption correction

$$f(p_T) = a_1 exp(-(rac{a_2}{p_T})^{a_3}) + a_4 exp(-rac{(p_T-a_5)^2}{2a_6})^2$$

Absorption correction factor:

 $f(p_{T}) = p_{0} + p_{1}p_{T} + p_{2}p_{T}^{2} + p_{3}p_{T}^{3} + p_{4}p_{T}^{4} + p_{5}p_{T}^{5} + p_{6}p_{T}^{6} + p_{7}p_{T}^{7} + p_{6}p_{T}^{7} + p_{6}p_{T}^{6} + p_{7}p_{T}^{7} + p_{6}p_{T}^{6} + p_{7}p_{T}^{7} + p_{6}p_{T}^{6} + p_{7}p_{T}^{7} + p_{6}p_{T}^{7} + p_{6}p$

Particle	p ₀	p ₁	p ₂	P ₃	p4	p ₅	p _₿ р ₇ ⁸	p ₇	p ₈	Reference
Deuteron	1.17269	-0.342489	0.287993	-0.126426	0.0325183	-0.00508311	0.000475232	-2.44273e-05	5.30683e-07	Link1, Link2,
³ He	1.24114	-0.325563	0.190857	-0.0591357	0.0108598	-0.00122826	8.46123e-05	-3.29416e-06	5.65162e-08	Link3

TOF matching efficiency and Background Corr.

 $\epsilon_{TOF} = rac{N_{TOF}}{N_{TPC}}$

Fit function:
$$f(x)=a_1ar{d}\left(x
ight)+d_{bkg}(x)\ d_{bkg}(x)=a_2(1-exp(rac{x}{a_3}))^{a_4}$$

Corrected p_{τ} spectra of deuteron

12

A clear p_T and centrality dependence of light nuclei spectra is observed

Background correction (V)

A clear p_T and centrality dependence of light nuclei spectra is observed

dN/dy

Yield Increases with
increasing centrality →
effect of baryon stopping
is stronger in central
collisions

15

<p_T> increases with increasing centrality → radial flow increases with centrality

Summary

- Corrected p_T spectra of deuteron is shown in Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ and 27 GeV
- □ 1st measurement of ³He p_T spectra is presented in Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ and 27 GeV
- \Box dN/dy and $\langle p_T \rangle$ is calculated for light nuclei in Au+Au collisions at $\sqrt{s_{_{NN}}} = 7.7$ and 27 GeV.

<u>Outlook</u>

- $\square \quad p_{T} \text{ spectra for proton in BES-II energies}$
- □ Estimate the compound light nuclei ratios
- □ Complete the analysis for other BES-II energies

Thank You All !

Sibaram Behera ALICE-STAR India Collaboration Meeting 24th - 27th June, 2023

Backup

→ At low
$$p_T$$
 : $\frac{1}{\sqrt{2\pi\sigma^2}}e^{(x-\mu)^2/2\sigma^2} + ae^{bx}$

→ At intermediate
$$p_T$$
: $\frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2}\sqrt{\pi\nu\sigma^2})} [1 + \frac{1}{\nu}(\frac{x-\mu}{\sigma})^2]^{-\frac{\nu+1}{2}} + ae^{bx}$