J/ Ψ Signal Extraction In Pb-Pb collisions at $\sqrt{s_{NN}}=5.36$ TeV In RUN 3 With ALICE at LHC

Sourav Kanti Giri Under the Supervision of Dr.Partha Pratim Bhaduri Variable Energy Cyclotrone Centre

Outline Of This Talk:

- Introduction:QGP and Relativistic Heavy Ion Collision
- Physics Motivation
- ALICE Detector to detect J/Ψ at forward rapidity:Muon Spectrometer
- Data sample and Analysis Procedure in O2 framework
- > Signal Extraction from raw dimuon data:Direct Fit
- \succ Integrated and differential (in $p_{\rm T}$) analysis
- Summary and Outlook

Quark Gluon Plasma

- Deconfined medium consisting of quark and gluons in local thermal equilibrium.
 Created either by heating or applying huge amount of pressure to the normal
- Created either by neating or applying huge amount of pressure to the normal nuclear matter.

Baryon Chemical Potential μ_B

Relativistic Heavy Ion Collision

 Heavy ions are accelerated to very high energy and collide with each other at LHC RHIC to form QGP medium at laboratory .

Physics Motivation

- Quarkonia is a bound state of heavy quark and anti-quark which are stable under strong decay.
- Quarkonia is very good probe to study QGP produced in relativistic heavy ion collisions.
- Due to high mass, formed at early stage of the collisions and witness entire evolution.
- Carry important thermodynamical properties of the early phases of the collision.
- > To study R_{AA} at different p_T bins with RUN3 data for Pb-Pb system.

PHYSICAL REVIEW LETTERS 132, 042301 (2024)

ALICE detector to detect J/Ψ: Muon Spectrometer

- > In ALICE J/ Ψ detected via dilepton |y| <0.9: J/ $\Psi \rightarrow e^+e^-$ 2.5 <y <4.0: J/ $\Psi \rightarrow \mu^+\mu^-$
- Muon Spectrometer has four components
 - Hadron Absorber
 Dipole Magnet (B ~ 0.7 T)
 Tracking Chamber
 Trigger System
- Pseudorapidity coverage:2.5<η<4</p>
- Spatial Resolution: 1 cm
- > Time Resolution : 2 ns

Data sample And Analysis Procedure

- * The Data set chosen: LHC23zzh_pass2_small
- Analysis Work Flow: O2-analysis-dq-table-reader
- Physics Selection
- Event Selection:eventStandardSel8NoTFBorder
 |Vz| < 10 cm, centrality : FT0C
- Same event pairing with opposite sign muons(OS)
- Standard muon track selection cuts applied:
 - 2 muon matching trigger
 - T 17.6 < R_{abs} < 89.5 cm
 Single muon p_T > 0.5 GeV/c

 - → 2.5<y_µ<4
 </p>
 - → 0 <p_T <12 GeV/c</p>
- Note: Full statistics of LHC23zzh is yet to be recovered, analysis will been redone

Signal Extraction(direct fit): p_T integrated

- Signal functions : Double Crystal Ball(CB2)
- Background functions :Variable With Gaussian(VWG)
 J/Ψ mass positions(PDG) and width(MC)
- > Fitting range: 2 $< M_{\mu\mu} < 4.5 \text{ GeV/c}^2$
- Tail parameters: MC embedding tails and pp 13 TeV tails from data
- > 1/6 th of the total data volume analyzed

Signal Extraction in p_T bins

Fitting characteristics value :different p_⊤ bins

- Signal extracted by fitting a set of large volume data.
- In the spectrum contribution from background(huge)and the signal resonance peak.
- S/B increase for higher p_T bins
- Significance of fitting decrease for higher p_T bins

J/Ψ in RUN 3: consistency checks

The number of J/ Ψ reported below for all p_T bins and sum over for all p_T bins and the total number obtained by fitting the p_T integrated spectra

The difference between
 J/Ψ counts value obtained
 from the sum of all p_T bins
 differs from the integrated
 spectrum by less than ~0.2%

Summary And Outlook

- > From the invariant mass spectrum of dimuon pairs J/ Ψ signal extracted and the no of J/ Ψ is obtained in the latest O2 Analysis framework.
- > Integrated as well as in differential p_T bins invariant mass spectrum presented.

List to do:

- > When full statistics recovered ,same thing will be redone.
- Background substraction , acceptance*efficiency correction ,systematic correction yet to be done.
- Extraction of mass pole and width for full sample data.
- Then some J/Ψ related physics problem (like. R_{AA}, flow,polarization etc.) can be looked over with the higher volume data of RUN3.

Backup Slides

≻

- signal shape: double Crystal Ball function (CB2) :

$$f(x; N, \bar{x}, \sigma, t_1, t_2, p_1, p_2) = N \cdot \begin{cases} A \cdot (B-t)^{-p_1} & , t \le t_1 \\ \exp\left(-\frac{1}{2}t^2\right) & , t_1 < t < t_2 \\ C \cdot (D+t)^{-p_2} & , t \ge t_2 \end{cases}$$

where

$$t = \frac{x - \bar{x}}{\sigma}$$

$$A = \left(\frac{p_1}{|t_1|}\right)^{p_1} \cdot \exp\left(-\frac{|t_1|^2}{2}\right)$$

$$B = \frac{p_1}{|t_1|} - |t_1|$$

$$C = \left(\frac{p_2}{|t_2|}\right)^{p_2} \cdot \exp\left(-\frac{|t_2|^2}{2}\right)$$

$$D = \frac{p_2}{|t_2|} - |t_2|$$

- background shapes: variable Width Gaussian (VWG) :

$$f(x; N, \bar{x}, A, B) = N \cdot \exp\left(-\frac{(x - \bar{x}^2)}{2\sigma_{VWG}^2}\right)$$

where

$$\sigma_{VWG} = A + B \cdot \frac{x - \bar{x}}{\bar{x}}$$

Old tails:

$$\alpha_1 = 0.883 \rightarrow t1$$

 $n_1 = 9.940 \rightarrow p1$
 $\alpha_2 = 1.832 \rightarrow t2$
 $n_2 = 15.323 \rightarrow p2$

14

Table Reader output:different p_T bins spectra

12

Table reader output: η & rapidity

Also J/Ψ signal checked for different p_T threshold cut and other cuts (MCH-MID,MCH-MFT,pDCA 10sigma etc)

Motivation

