

Update on strangeness and resonance production in p-Pb collisions at 8.16 TeV recorded with ALICE

ALICE-STAR India Collaboration meeting

(24th -27th June, 2024)

Vikash Sumberia Supervisor: Prof. Sanjeev Singh Sambyal University of Jammu

Outline

- Motivation
- Earlier results with comments from ARC and Physics Forum
- Updated results
- Summary

Motivation

- Strange to non-strange ratios with multiplicity \rightarrow
 - Enhancement of strange to non-strange hadron production >from low multiplicity pp to central Pb-Pb collisions.
 - Smooth evolution between pp, p-Pb and Pb-Pb collisions. >
 - Strange to non-strange ratios saturated for all particles in \succ central Pb-Pb collisions.

 \rightarrow Mean pt increases with multiplicity.

Motivation

- → The p_{T} differential ratios of baryon over meson shows peak at intermediate p_{T} interplay of radial flow and parton recombination at intermediate p_{T}
- Baryon over Meson ratio shows no significant change as a function of multiplicity Strangeness enhancement is not driven by mass nor it is a baryon/meson effect
- → Mass ordering of R_{pPb} at intermediate p_T which is qualitatively similar to that in Pb-Pb collisions → Mass ordering or Baryon meson splitting?

Motivation

→ Suppression or enhancement in yields depend upon

- ➤ Lifetime of resonance particle
- Interaction cross section of decay daughters
- Lifetime of hadronic phase
- → Their lifetimes are exploited for the estimation of lifetime of the hadronic phase

Earlier Results

Corrected $p_{\rm T}$ spectra

PF comment: It is noticed that in the most central bin, the yield of $K0_s$ decreases towards high p_T which is not expected for mesons.

Corrected $p_{\rm T}$ spectra

Integrated yield (dN/dy)

Average $p_{\rm T}$

- p_> increases with multiplicity
- Collision energy dependence of <p_T> is observed more for mesons than for baryons.

Ratio to pions vs multiplicity

• Ratio of KOs and A with respect to pions show enhancement with multiplicity.

• Enhancement is consistent in pp and p-Pb systems at various energies \implies multiplicity effect on strangeness production in small systems.

Λ / K⁰s ratio

- Λ/K_{s}^{0} ratio with pt shows a peak at mid pt which is more enhanced in high multiplicity collisions.
- No energy dependence of the ratios.
- No evolution in the Λ/K^{0}_{s} with multiplicity.
- Ratios are consistent across small systems at various energies.

R_{pPb}

- $R_{\rm pPb}$ shows suppression in the low $p_{\rm T}$.
- In high $p_{\rm T}$, $R_{\rm pPb}$ is equal to 1 within • systematic uncertainty.
- Cronin like enhancement for baryons • at mid pt.
- EPOS3 prediction shows no evolution • with p_{τ} .

with EPOS3?

Resonance to non-resonance ratios

- Hint of formation of hadronic phase in p-Pb system as K*/K⁰s shows suppression.
- Λ^*/Λ show no evolution with multiplicity.
- EPOS3 predicts small suppression for $K^{\star}/K^{0}s$ ratio with UrQMD ON
- Small enhancement in the Λ^*/Λ ratio predicted by the EPOS3 model with and without UrQMD.

PF comment: There is less of an impression of suppression in the K^*/K^0 s ratio shown here. Compare with other available results.

ARC comment: Show $p_{\rm T}$ differential ratios of Λ^*/Λ in the low and high multiplicity collisions.

Updated Results

 9 10 p_T (GeV/c)

Integrated yield and average $p_{\rm T}$

- EPOS3 predictions for average $p_{\rm T}$ are added.
- EPOS3 underestimates the $\langle p_T \rangle$ for K0s and $\Lambda(1115)$, but shows consistency with $\Lambda(1520)$ within the systematic uncertainties.
- EPOS3 without UrQMD estimates lower results compared to EPOS3 with UrQMD.

- EPOS3 estimates for $R_{\rm pPb}$ are showing evolution now and approaches to unity at high $p_{\rm T}$ (This picture was absent earlier due to event generation without hydro in EPOS3)
- EPOS3 in the full hydro+cas simulation does not show any peak above unity for baryons.

Resonance to non-resonance ratios

- The K^{*}/K⁰s ratios are consistent between pp and p-Pb systems across common multiplicity values within systematic uncertainties.
- The slope of the K^{\ast}/K^0s ratio is steeper for p-Pb compared to pp in the common multiplicity region.

Resonance to non-resonance ratios

• The $p_{\rm T}$ spectral ratio of Λ^*/Λ does not change significantly in the central collisions compared to peripheral collisions.

Summary

- Updated results for measurement of K^0s , $\Lambda(1115)$ and $\Lambda(1520)$ for p-Pb system at 8.16 TeV are shown.
- Comments from the ARC and Physics Forum are addressed.
- The first draft of the paper is submitted.

Backup

Dataset

• Analysing Minimum Bias LHC16r CENT low interaction rate runs (comparable with 5TeV rates):

• 265594, 265596, 265607, 266318, 266317, 266316 (40% full triggered statistics)

	No. Events
No. Events Processed	15.9 x 10 ⁶
No. Events After Trigger Selection	12.5 x 10 ⁶
No. Events After Event Selections	11.4 x 10 ⁶

Trigger: AliEvent::kINT7 DAQ Rejection: IsIncompleteDAQ() Pileup Rejection: IsPileupFromSPDInMultBins() Vertex quality: $|Z_{SPD}-Z_{Track}| < 0.5$ cm, Resolution < 0.25 cm Z-vertex selection: $|Z_{Vtx}| < 10$ cm Multiplicity Selection: AliMultSelection::GetMultiplicityPercentile("VOA")

- MC: Using merge of same 6 low interaction runs in GP EPOS-LHC and GP DPMJET
 - LHC17f3a_cent_fix GP EPOS-LHC: https://alice.its.cern.ch/jira/browse/ALIROOT-7100
 - LHC17f3b_cent GP DPMJET: https://alice.its.cern.ch/jira/browse/ALIROOT-7100
- MC: ~ 2.2 x 10⁶ events after event selections

Dataset

System@energy	p-Pb@8.16 TeV	pp@8 TeV
Dataset	LHC16r_CENT_wSDD, LHC16r_FAST	LHC12a, LHC12b, LHC12c, LHC12d, LHC12f, LHC12h, LHC12i
Data type	Pass1, ESD	Pass2, ESD
Trigger	kINT7	kINT7
Events	28, 7 M	13.5, 5.4, 4, 14.3, 4.4, 16, 2.4 M
Anchored MC production	LHC17I7a2_cent, LHC17I7a2_fast	LHC15h2a, LHC15h2b, LHC15h2c, LHC15h2d, LHC15h2f, LHC15h2h, LHC15h2i

- Event selection:
 - Trigger: kINT7
 - Pileup rejection
 - $|v_{7}| < 10 \text{ cm}$
 - Analysis cuts

- StandardITSTPCTrackCuts2011
- |η| < 0.8
- $0 < y_{pair} < 0.5$ for p-Pb -0.5 $< y_{pair} < 0.5$ for pp
- $p_{T} > 0.15 \text{ GeV/c}$
- PID

Track not present in TOF, (N σ) TPC =2

Proton:0 <p(GeV/c)< 1.1

and Kaon: 0 <p(GeV/c)< 0.6

Track present in TOF, (N σ) TOF =3 with (N σ) TPC =5 as veto

Signal extraction

```
For K<sup>0</sup>
       p_{\rm T} range -> 0.2 to 10 (GeV/c)
Multiplicity = \{0, 1, 5, 10, 15, 20, 30, 40, 50, 
60, 70, 80, 100}%
     (Multiplicities based on V0A estimator)
For \Lambda(\overline{\Lambda})
      p_{\rm T} range -> = 0.6 to 10 (GeV/c)
Multiplicity = \{0, 1, 5, 10, 15, 20, 30, 40, 50, \dots\}
60, 70, 80, 100}%
     (Multiplicities based on V0A estimator)
Decay Channel used:
K^0 \to \pi^+ \pi^- (B.R \ 69.2\%)
                                   \Lambda \rightarrow p\pi^{-} (B.R
63.9\%
```

Method for signal extraction:

The invariant mass distributions are fitted with a gaussian peak and second order polynomial for background

Signal region defined as **[M – 4\sigma, M + 4\sigma]**, where

- M = Mean of fitted Gaussian (mass of V0)

- σ = standard deviation of fitted Gaussian

- Background region defined as [M - 10 σ , M - 6 σ] and

[**M** +6σ, **M** + 10σ];

- signal counts determined by subtracting the sum of the background counts in the sidebands from the total counts in the signal region (Bin Counting Method)

Signal extraction

- **Invariant mass method:** Resonances reconstructed by their decay products, adding their 4-momenta
- Combinatorial background : Removed using mixed event technique (10 events are mixed)
- Residual background : Correlated pairs or misidentified decay products removed by fitting with polynomial function
- Signal : Fit with Voigtian function, yield calculated by integrating the fitting function

