

Y(nS) cross section measurement in pp collisions @ 13TeV

Subikash Choudhury Jadavpur University

ALICE-STAR India Collaboration meeting, IOP, Bhubaneshwar June 24-27, 2024

Introduction

Charmonia: J/ψ, ψ(2S)
Bottmonia : Υ(nS)

Quarkonium production in pp collisions:

- → Initial heavy quark production (sensitive to pQCD)
- → Formation of bound quarkonium states (non perturbative QCD)
- → Constrain model calculations (CO/CS mechanism)
- \rightarrow Reference measurement for heavy-ion system

Motivation and Analysis Details

Physics motivation of this analysis:

> Benefit from highest statistics Run 2 data to do precise measurements $\Upsilon(nS)$ cross-sections in finner p_T and y bins

- > Extend to $\Upsilon(3S)$ in ALICE
- ≻ Facilitate more stringent test QCD
- ➤ Benchmark for RUN3 analyses and complementary to LHCb

<u>**Trigger selection :**</u> CMUL7-NOPF-MUFAST <u>**Physics selection :**</u> kMuonUnlikePt7 (LHC17 and LHC18) or kMUU7 (LHC16)

Total Analysed Events: ~ 647 M

 Single muon track selection
 Muon tracking-trigger matching.

2.
$$-4.0 < \eta_{\mu} < -2.5$$

3.
$$17.6 < R_{abs} < 89 \text{ cm}$$

 $\frac{\text{Muon pair selection}}{2.5 < y^{\mu+\mu} < 4}$

2. Opposite sign charges

3.
$$0 < p_{\rm T} < 30 \, {\rm GeV/c}$$

Signal Extraction

- 1. Obtain di-muon invariant mass spectra
- 2. Fit mass spectra with a combination of signal+ background function
 - → Signal: Crystal Ball (An exponetial tail + Gaussian core)
 - → Background: DE, DP, VWG (Pl. See back up)
- 3. Determine tail parameters
- 4. Refit invariant mass spectra keeping tail parameters fixed

```
Parameter initialization and constrains:

\rightarrow Mass of Y(1S) is kept free

\rightarrow Sigma of Y(1S) is kept free

m_{\Upsilon(nS)} = m_{\Upsilon(1S)} + (m_{\Upsilon(nS)}^{PDG} - m_{\Upsilon(1S)}^{PDG}), \quad \sigma_{\Upsilon(nS)} = \sigma_{\Upsilon(1S)} \times \frac{\sigma_{\Upsilon(nS)}^{MC}}{\sigma_{\Upsilon(1S)}^{MC}}
```


Tail Extraction from Monte Carlo

-Invarient mass distribution is fitted with CB2
-No background
-p_T and rapidity inclusive

α_{L}	1.016
n _L	2.035
$\alpha_{_{R}}$	2.063
n _R	2.247

Data driven tail extraction

Steps of extraction

1.A bkg function is fitted excluding at least $\pm 5\sigma$ around $\Upsilon(1S)$ mass peak

2.Bkg+Gaus is fitted excluding $\Upsilon(2S)$ and $\Upsilon(3S)$

3.Bkg+1CB2 taking mass and σ of 1S from step2, excluding 2s and 3s, and bkg params are fixed

4.Bkg + 2CB2 excluding 3s, bkg params fixed

5. Bkg + 3CB2, bkg params fixed

6. Mass and sigma of $\Upsilon(1S)$ and, tail parameters are always kept free

Graphical demonstration

Data driven tail extraction

Steps of Extraction

1.A bkg function is fitted excluding at least $\pm 5\sigma$ around $\Upsilon_{_{1s}}$ mass peak

2.Bkg+Gaus is fitted excluding $\Upsilon_{_{2S}}$ and $\Upsilon_{_{3S}}$

3.Bkg+1CB2 taking mass and σ of 1s from step2, excluding 2s and 3s, and bkg params are fixed

4.Bkg + 2CB2 excluding 3s, bkg params fixed

5. Bkg + 3CB2, bkg params fixed

6. Mass and sigma of $\Upsilon_{_{1s}}$ and, tail parameters are always kept free

Systematics are done repeating 1-5 for following conditions

Bkg Functions	 Double Exponential Sum of two power law Variable Width Gaussian
Fit ranges	6-13, 7-14, 5-12
Exclusion region around Υ(1S) mass peak	±5σ, ±6σ, ±8σ

Left Tail Parameters (α_{L} and n_{L})

Gray band $\pm 5\sigma$ around global mean

Black solid lines $\pm 3\sigma$ around global mean

Orange markers, data points ±3σ away from global mean

Blue markers, data points within $\pm 3\sigma$ of global mean

Right Tail Parameters (α_R and n_R)

Gray band $\pm 5\sigma$ around global mean

Black solid lines $\pm 3\sigma$ around global mean

Orange markers, data points $\pm 3\sigma$ away from global mean

Blue markers, data points within $\pm 3\sigma$ of global mean

Final Tail Parameters (data)

Data driven tail parameters are extracted averaging over those fits that have converged

α_{L}	0.814	
n _L	3.150	
α _R	1.242	
n _R	3.864	

No explicit cut over χ^2/ndf is applied

Mass and σ of $\Upsilon(1S)$ of corresponding fits

Mass and Sigma of $\Upsilon(1S)$ across different run-periods with data-driven tail params

Acceptance and Efficiency corrections $[\Upsilon(nS)]$

MC sample: tuned on LHCb data @ 13TeV LHC21d7 LHC22d4

$$<\!A\varepsilon\!>=rac{N_{
m reconstructed}}{N_{
m generated}}$$

run number

12

Luminosity

For systematics two methods are used to determine F_{norm} : offline (direct & indirect)

 F_{norm} offline1 (direct) = 2467.04 +/- 13.36 F_{norm} offline2 (indirect) = 2400.25 +/- 1.34

$$\Delta F_{\text{norm}} = 66.79 \ (2.78\%) \ [\text{syst}]$$

$$\Delta \sigma_{v0} = 2.0 \ \%$$

$$\text{Total uncertainty} = 3.46\%$$

$$L_{int} = \frac{N_{CMUL7,PS} \times F_{norm}}{\sigma_{VdM}}$$

Taking F_{norm} offline2 as default choise, integrated lumnosity 26.87 +/- 0.037%(stat) +/- 3.46%(syst) pb⁻¹

$p_{\rm T}$ differential $\Upsilon(1S)$ cross sections

$p_{\rm T}$ differential $\Upsilon(1S)$ cross sections compared to ICEM

$$\frac{d\sigma_{\psi}(P)}{d^3P} = F_{\psi} \int_{2m_c}^{2M_D} dM \frac{d\sigma_{c\bar{c}}(M,P)}{dMd^3P}$$

Colour Evaporation model

 ➤ A fixed fraction of QQbar pairs form J/ψ or Y(nS), provided mass of QQbar pair < D/B-meson mass threshold
 ➤ CEM is in general successful in describing quarkonium production
 ➤ A flaw in the approach: ratios of two charmonium states are independent of kinematics.

$$\frac{d\sigma_{\psi}(P)}{d^3P} = F_{\psi} \int_{M_{\psi}}^{2M_D} d^3P' dM \frac{d\sigma_{c\bar{c}}(M,P')}{dMd^3P'} \delta^3(P - \frac{M_{\psi}}{M}P')$$

Improved Colour Evaporation Model:

≻Incorporates the kinematic dependence

In general good agreement within uncertainties

$p_{\rm T}$ differential $\Upsilon(2S)$ cross sections

Y(2S) cross sections
are in good ageement
between ALICE & LHCb
→ Mostly within 1σ

$p_{\rm T}$ differential $\Upsilon(2S)$ cross sections compared to ICEM

In general good agreement within uncertainties

$p_{\rm T}$ differential $\Upsilon(3S)$ cross sections

 Υ (3S) cross sections are in low p_T bins have large disagreement between ALICE & LHCb →Agreement at high p_T is better

$p_{\rm T}$ differential $\Upsilon(3S)$ cross sections compared to ICEM

ICEM calculations not in a good agreement even within uncertainties

$p_{\rm T}$ differential $\Upsilon(3S)$ cross section compared to ICEM

20

y differenential $\Upsilon(nS)$ cross sections

y differenential Y(nS) cross sections compared to ICEM

Good agreement within uncertainties

$\Upsilon(1S \& 2S)$ cross sections with \sqrt{s}

The cross sections of Y(1S) at different collision energies are shown as functions of p_T and y. \rightarrow ICEM model can describe the energy dependence of the production of Y(nS)

Integrated $\Upsilon(nS)$ cross section compared to ICEM

$p_{\rm T} {\rm GeV}/c$	$d\sigma_{\Upsilon(1S)}/dp_{T}\pm$	$p_{\rm T} {\rm GeV}/c$	$\mathrm{d}\sigma_{\Upsilon(2\mathrm{S})}/\mathrm{d}p_{\mathrm{T}}\pm$	$p_{\rm T} {\rm GeV}/c$	$\mathrm{d}\sigma_{\Upsilon(3\mathrm{S})}/\mathrm{d}p_{\mathrm{T}}\pm$
	stat [nb]		stat [nb]		stat [nb]
0-1	5.22 ± 0.32	0–2	2.54 ± 0.25	0-4	0.83 ±0.16
1-2	11.83 ± 0.50	2–3	4.13 ± 0.49	4-8	1.24 ± 0.18
2–3	16.19 ± 0.60	3–4	4.55 ± 0.49	8-10	0.94 ± 0.21
3-4	15.94 ± 0.59	4-6	5.26 ± 0.35	10-12	0.66 ± 0.18
4–5	15.09 ± 0.57	6-8	3.28 ± 0.32	12-16	0.46 ± 0.08
5-6	12.48 ± 0.52	8-10	2.15 ± 0.26	16-30	0.07 ± 0.01
6-8	9.97 ± 0.33	10-12	1.02 ± 0.23		
8-10	5.53 ± 0.25	12-16	0.60 ± 0.09		
10-12	3.02 ± 0.21	16-30	0.08 ± 0.02		
12-16	1.34 ± 0.08				
16-30	0.21 ± 0.02				
0-30	$\sigma_{\Upsilon(1S)} = 122.09$	-	$\sigma_{\Upsilon(2S)} = 40.70$	-	$\sigma_{\Upsilon(3S)} = 14.30$
	± 1.64		± 1.52		± 1.16

Table 9: p_T -differential cross sections of $\Upsilon(nS)$, shown in Fig 17 are tabulated here.

у	$d\sigma_{\Upsilon(1S)}/dy \pm stat [nb]$	у	$d\sigma_{\Upsilon(2S)}/dy \pm stat [nb]$	$d\sigma_{\Upsilon(3S)}/dy \pm stat [nb]$
2.5-2.75	98.22 ± 4.20	2.5-3.0	30.90 ± 1.87	12.25 ± 1.47
2.75-3.0	90.63 ± 2.46	3.0-3.5	27.31 ± 1.44	8.46 ± 1.13
3.0-3.25	87.84 ± 2.24	3.5-4.0	25.13 ± 2.18	9.27 ± 1.65
3.25-3.50	77.76 ± 2.28			
3.50-3.75	70.24 ± 2.71			
3.75-4.00	56.14 ± 5.40			
2.5-4.0	$\sigma_{\Upsilon(1S)} = 120.21 \pm 2.09$	-	$\sigma_{\Upsilon(2S)} = 41.67 \pm 1.60$	$\sigma_{\Upsilon(3S)}=14.99\pm1.24$

Table 10: Rapidity-differential cross sections of $\Upsilon(nS)$ as shown in left panel of Fig. 19

$\Upsilon(nS)$	$N_{raw} \pm stat \pm sys$	Aε	BR	Lum [pb ⁻¹]	$\sigma \pm \text{stat} \pm \text{syst} [\text{nb}]$
1S	$24,314 \pm 332 \pm 499$	0.3024	0.0248	26.87	$120.65 \pm 1.65 \pm 2.49$
2S	$6408 \pm 231 \pm 416$	0.3036	0.0193	-	$40.70 \pm 1.47 \pm 2.65$
3S	$2478 \pm 206 \pm 256$	0.3051	0.0213	-	$14.27 \pm 1.18 \pm 1.47$

Table 11: Integrated cross sections obtained independently from the fit to inclusive mass spectra.

Integrated cross sections agree well with differential estimations

Summary

1. Υ (nS) cross sections are measured as a function of p_T (< 30 GeV) and y 2. Cross sections are compared to LHCb, agreement within 1 σ in most bins 3. Compared with ICEM model calculations, Υ (1S and 2S) agrees well

Ongoing work: Systematic error calculations related to track and trigger matching efficiency

Remaining task: 1. Comparison to other model calculations

Paper proposal: 1. Merged paper proposal of THIS analysis + $\Upsilon(1S)$ polarization anticipated soon

Fit Functions

$$f(x;\mu,\sigma,\alpha_L,n_L,\alpha_R,n_R) = N.\begin{cases} \exp(-\frac{(x-\mu)^2}{2\sigma^2}) & \text{for } \alpha_R > \frac{x-\mu}{\sigma} > -\alpha_L \\ A.(B - \frac{x-\mu}{\sigma})^{-n_L} & \text{for } \frac{x-\mu}{\sigma} \le -\alpha_L \\ C.(D + \frac{x-\mu}{\sigma})^{-n_R} & \text{for } \frac{x-\mu}{\sigma} \ge \alpha_R \end{cases}$$

$$A = \left(\frac{n_L}{|\alpha_L|}\right)^{n_L} \exp\left(-\frac{|\alpha_L|^2}{2}\right)$$

$$B = \frac{n_L}{|\alpha_L|} - |\alpha_L|$$

$$C = \left(\frac{n_R}{|\alpha_R|}\right)^{n_R} \cdot \exp\left(-\frac{|\alpha_R|^2}{2}\right)$$

$$B=\frac{n_R}{|\alpha_R|}-|\alpha_R|$$

Double Expoenential

The following Double Expoenential (DE) function have been used to fit the background of dimuon spectrum,

 $f(x) = e^{a_1 + b_1 x} + e^{a_2 + b_2 x}$

where a_1, a_2, b_1, b_2 are fitting parameters.

Double Power Law

The second function which have been used for background estimation is Double Power Law (DP),

 $f(x) = N_1 \cdot x^{a_1} + N_2 \cdot x^{a_2}$

Systematic tags

Bkg. Func	Fit Range	Tail type	Tag	Bkg. Func	Fit Range	Tail type	Tag
DE	6-14	data	000	DE	6-14	MC	009
	7-12		001		7-12		010
	5-14		002		5-14		011
DP	6-14	data	003	DP	6-14	MC	012
	7-12		004		7-12		013
	5-14		005		5-14		014
VWG	6-14	data	006	VWG	6-14	MC	015
	7-12		007		7-12		016
	5-14		800		5-14		017

Invariant mass distribution @ 13.6 TeV

- Improvement in mass resolution
- Mass position remains same

Systematics of mass position resolution

standard track association

time compatible track association (2σ)

- Improvement in mass resolution is apparent for all variations in fit
- Statistics is however, limited