

ϒ(nS) cross section measurement in pp collisions @ 13TeV

 Subikash Choudhury Jadavpur University

ALICE-STAR India Collaboration meeting, IOP, Bhubaneshwar June 24-27, 2024

Introduction

➢ Charmonia: **J/ψ, ψ(2S**) ➢ Bottmonia : **ϒ(nS)**

Quarkonium production in pp collisions:

- \rightarrow Initial heavy quark production (sensitive to pQCD)
- \rightarrow Formation of bound quarkonium states (non perturbative QCD)
- \rightarrow Constrain model calculations (CO/CS mechanism)
- \rightarrow Reference measurement for heavy-ion system

Motivation and Analysis Details

Physics motivation of this analysis:

 \triangleright Benefit from highest statistics Run 2 data to do precise measurements $\Upsilon(nS)$ cross-sections in finner p_r and y bins

 \triangleright Extend to Y(3S) in ALICE

 \triangleright Facilitate more stringent test QCD

➢ Benchmark for RUN3 analyses and complementary to LHCb

Trigger selection: CMUL7-NOPF-MUFAST Physics selection: kMuonUnlikePt7 (LHC17 and LHC18) or kMUU7 (LHC16)

Total Analysed Events: ~ 647 M

pDCA cuts

Muon pair selection 1. $2.5 < y^{\mu+\mu} < 4$ 2. Opposite sign charges 3. $0 < p_{\rm T} < 30$ GeV/c

Signal Extraction

- 1. Obtain di-muon invariant mass spectra
- 2. Fit mass spectra with a combination of signal+ background function
	- → **Signal: Crystal Ball (An exponetial tail + Gaussian core)**
	- **→ Background: DE, DP, VWG (Pl. See back up)**
- 3. Determine tail parameters
- 4. Refit invariant mass spectra keeping tail parameters fixed

```
Parameter initialization and constrains:
 →Mass of ϒ(1S) is kept free
 →Sigma of ϒ(1S) is kept free
m_{\Upsilon(nS)} = m_{\Upsilon(1S)} + (m_{\Upsilon(nS)}^{\text{PDG}} - m_{\Upsilon(1S)}^{\text{PDG}}), \quad \sigma_{\Upsilon(nS)} = \sigma_{\Upsilon(1S)} \times \frac{\sigma_{\Upsilon(nS)}^{\text{PDG}}}{\sigma_{\Upsilon(nS)}^{\text{MC}}}
```


Tail Extraction from Monte Carlo

-Invarient mass distribution is fitted with CB2 -No background - p_{T} and rapidity inclusive

Data driven tail extraction

Steps of extraction

1.A bkg function is fitted excluding at least $\pm 5\sigma$ around $Y(1S)$ mass peak

 $2.Bkg + Gauss$ is fitted excluding $Y(2S)$ and $\Upsilon(3S)$

3.Bkg+1CB2 taking mass and σ of 1S from step2, excluding 2s and 3s, and bkg params are fixed

4.Bkg + 2CB2 excluding 3s, bkg params fixed

5. Bkg + 3CB2, bkg params fixed

6. Mass and sigma of $Y(1S)$ and, tail parameters are always kept free

Graphical demonstration

Data driven tail extraction

Steps of Extraction

1.A bkg function is fitted excluding at least $\pm 5\sigma$ around Υ _{1s} mass peak

2.Bkg+Gaus is fitted excluding Y_{2s} and Y_{3s}

3.Bkg+1CB2 taking mass and σ of 1s from step2, excluding 2s and 3s, and bkg params are fixed

4.Bkg + 2CB2 excluding 3s, bkg params fixed

5. Bkg + 3CB2, bkg params fixed

6. Mass and sigma of Y_{1s} and, tail parameters are always kept free

Systematics are done repeating 1-5 for following conditions

Left Tail Parameters $(\alpha_{\text{L}}$ and $n_{\text{L}})$

Gray band ±5σ around global mean

Black solid lines ±3σ around global mean

Orange markers, data points ±3σ away from global mean

Blue markers, data points within ±3σ of global mean

Right Tail Parameters $(\alpha_{\rm R}^{\rm }$ and ${\rm n}_{\rm R}^{\rm }$)

Gray band ±5σ around global mean

Black solid lines ±3σ around global mean

Orange markers, data points ±3σ away from global mean

Blue markers, data points within ±3σ of global mean

Final Tail Parameters (data)

Data driven tail parameters are extracted averaging over those fits that have converged

²/ndf is applied

Mass and σ of $Y(1S)$ of corresponding fits

Mass and Sigma of $\Upsilon(1S)$ across different run-periods with data-driven tail params

Acceptance and Efficiency corrections $[\Upsilon(nS)]$

$$
\langle A\varepsilon \rangle = \frac{N_{\text{reconstructed}}}{N_{\text{generated}}}
$$

run number

Luminosity

For systematics two methods are used to determine $\mathrm{F}_{_{\rm norm}}$: offline (direct & indirect)

Taking $\rm F_{norm}$ offline2 as default choise, integrated lumnosity 26.87 +/- $\rm~0.037\% (stat)$ +/- $\rm~3.46\% (syst)$ pb⁻¹

p_T differenential $Y(1S)$ cross sections

p_T differenential $Y(1S)$ cross sections compared to ICEM

$$
\frac{d\sigma_{\psi}(P)}{d^3P} = F_{\psi} \int_{2m_c}^{2M_D} dM \frac{d\sigma_{c\bar{c}}(M, P)}{dMd^3P}
$$

Colour Evaporation model

 \triangleright A fixed fraction of QQbar pairs form J/ψ or Υ(nS), provided mass of QQbar pair < D/B-meson mass threshold \triangleright CEM is in general successful in describing quarkonium production \triangleright A flaw in the approach: ratios of two charmonium states are independent of kinematics.

$$
\frac{d\sigma_\psi(P)}{d^3P}=F_\psi\int_{M_\psi}^{2M_D}d^3P'dM\frac{d\sigma_{c\overline{c}}(M,P')}{dMd^3P'}\delta^3(P-\frac{M_\psi}{M}P')
$$

Improved Colour Evaporation Model:

➢Incorporates the kinematic dependence

In general good agreement within uncertainties

p_T differenential $Y(2S)$ cross sections

Y(2S) cross sections are in good ageement between ALICE & LHCb \rightarrow Mostly within 1 σ

p_T differenential $Y(2S)$ cross sections compared to ICEM

In general good agreement within uncertainties

p_T differenential $Y(3S)$ cross sections

ϒ(3S) cross sections are in low p_T bins have large disagreement between ALICE & LHCb \rightarrow Agreement at high p_T is better

*p*_T differenential Y(3S) cross sections compared to ICEM

ICEM calculations not in a good agreement even within uncertainties

p_T differenential $Y(3S)$ cross section compared to ICEM

y differenential ϒ(nS) cross sections

y differenential $Y(nS)$ cross sections compared to ICEM

Good agreement within uncertainties

$Y(1S & 2S)$ cross sections with \sqrt{s}

The cross sections of Y(1S) at different collision energies are shown as functions of $p_{\scriptscriptstyle T}$ and y. \rightarrow ICEM model can describe the energy dependence of the production of $\Upsilon(nS)$

Integrated Y(nS) cross section compared to ICEM

Table 9: p_T -differential cross sections of $\Upsilon(nS)$, shown in Fig 17 are tabulated here.

Table 10: Rapidity-differential cross sections of $\Upsilon(nS)$ as shown in left panel of Fig. 19

Table 11: Integrated cross sections obtained independently from the fit to inclusive mass spectra.

Integrated cross sections agree well with differential estimations

Summary

1. $Y(nS)$ cross sections are measured as a function of p_T (< 30 GeV) and y 2. Cross sections are compared to LHCb, agreement within 1σ in most bins 3. Compared with ICEM model calculations, $Y(1S \text{ and } 2S)$ agrees well

Ongoing work: Systematic error calculations related to track and trigger matching efficiency

Remaining task: 1. Comparison to other model calculations

Paper proposal: 1. Merged paper proposal of THIS analysis $+ \Upsilon(1S)$ polarization anticipated soon

Fit Functions

$$
f(x; \mu, \sigma, \alpha_L, n_L, \alpha_R, n_R) = N \cdot \begin{cases} \exp(-\frac{(x-\mu)^2}{2\sigma^2}) & \text{for } \alpha_R > \frac{x-\mu}{\sigma} > -\alpha_L\\ A \cdot (B - \frac{x-\mu}{\sigma})^{-n_L} & \text{for } \frac{x-\mu}{\sigma} \le -\alpha_L\\ C \cdot (D + \frac{x-\mu}{\sigma})^{-n_R} & \text{for } \frac{x-\mu}{\sigma} \ge \alpha_R \end{cases}
$$

$$
A = \left(\frac{n_L}{|\alpha_L|}\right)^{n_L} \exp\left(-\frac{|\alpha_L|^2}{2}\right)
$$

$$
B=\frac{n_L}{|\alpha_L|}-|\alpha_L|
$$

$$
C = \left(\frac{n_R}{|\alpha_R|}\right)^{n_R} \exp\left(-\frac{|\alpha_R|^2}{2}\right)
$$

$$
B=\frac{n_R}{|\alpha_R|}-|\alpha_R|
$$

Double Expoenential

The following Double Expoenential (DE) function have been used to fit the background of dimuon spectrum,

 $f(x) = e^{a_1+b_1x} + e^{a_2+b_2x}$

where a_1 , a_2 , b_1 , b_2 are fitting parameters.

Double Power Law

The second function which have been used for background estimation is Double Power Law (DP),

 $f(x) = N_1 \cdot x^{a_1} + N_2 \cdot x^{a_2}$

Systematic tags

Invariant mass distribution $@$ 13.6 TeV

- \triangleright Improvement in mass resolution
- > Mass position remains same

Systematics of mass position resolution

standard track association time compatible track association (2σ)

- ➢ Improvement in mass resolution is apparent for all variations in fit
- ➢ Statistics is however, limited