

MD 11787: Longitudinal Halo Scraping

Birk Emil Karlsen-Bæck, T. Argyropoulos, R. Calaga, N. Gallou, I. Karpov, S. Morales, S. Redaelli, B. Salvachua, H. Timko, M. Zampetakis

3rd May 2024

Motivation

Power limitations at injection

- Study proportion of uncaptured beam and flat-bottom losses
- Scaling of losses to benchmark simulations
 - Estimate margins in voltage and consequently RF power
 - Predictions for HL-LHC

Remarks

- Similar studies have been performed with full machine at top energy in IR7
- If possible, explore bunch intensities of or above 1.8x10¹¹ p/b (in a second MD)

https://asm.cern.ch/md-planning/lhc-requests/11787/

Preparation of the MD

Prepare acquisitions:

- Longitudinal beam profiles in the LHC and at SPS extraction
- Injection power transients
- Diamond detectors in IR7
- Check instrumentation for collimators
- Prepare special IR3 collimator threshold for outer limits at flat-bottom
 - Making sure to only open limits to not move out primary collimators by accident

Establishing the Collimator Reference Position

- Beam needed:
 - 12 bunches
- Procedure:
 - Longitudinal blow-up of the beam to to fill the bucket (1.5-1.6 ns)
 - Drive in collimators and obtain the reference position corresponding to bucket height

Measuring the Uncaptured Beam and Flat-bottom Losses

- Beam needed:
 - 12b and 144b batches 25ns spacing
 - Possible to do 12b plus one 144b-injection with frequent re-filling
 - Ideally 3-4 injections of 144b trains (500-600 bunches)
 - Highest possible intensity (for first MD operational intensity)
- Procedure
 - Inject and move in collimators to measure uncaptured beam
 - Move collimators out
 - After some time at flat bottom, move them in again to measure debunched beam
 - Change RF settings for each re-filling

Different RF/Beam Parameters

• With and without beam-phase loop

- Study the capture of the first batch (phase loop on) and the last batch (phase loop off)
- Different capture voltages
 - Uncaptured beam and flat-bottom loss as a function of voltage

Varied injection errors

- Sensitivity to injection phase errors
- Different times spent at flat-bottom
 - Proportion of uncaptured beam and flat-bottom loss as a function of batch number
- Turning on and off the ADT cleaning
- Ideally different bunch intensities

After the MD

- Restore nominal RF settings and close beam-phase loop
- Drive back collimators to nominal position

home.cern