Staying on Top of SMEFT-Likelihood Analyses Improving global SMEFT analyses using public likelihoods and more

Nikita Schmal 03/12/2024, <u>8th General Meeting of the LHC EFT Working Group</u>

Based on [2208.08454] Ilaria Brivio, Sebastian Brugisser, Nina Elmer, Emma Geoffray, Michel Luchmann [2312.12502] Nina Elmer, Maeve Madigan, Tilman Plehn, <u>Nikita Schmal</u> [2411.00942] Theo Heimel, Tilman Plehn, <u>Nikita Schmal</u>

A brief history of SFITTER

- Used for various global SMEFT analyses

 - Top data [1910.03606, 2312.12502]
- Fully correlated systematic uncertainties within experiments
- Allows for both profiling and marginalization methods
- Mapping of likelihood using MCMC (not anymore)

• Higgs, EWPOs, Di-Boson data [1505.05516, 1812.07587, 2208.08454]

• **SMEFT**: model agnostic approach for BSM

$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathscr{O}_i^{(6)} + \dots$$

- operators of dimension 6, contributions up to quadratic order
- SMEFT predictions expressed via simple bilinear operation $p_i^{(b)} = W$
- Further assumptions depending on specific analysis

SMEFT IN SFITTER

$$V_{ijk}C_j^{(b)}\tilde{C}_k^{(b)} + B_i$$

SFITTER dataset

2312.1250

- includes $t\bar{t}, t\bar{t}Z, t\bar{t}W$ and SingleTop
- also top decays, charge asymmetries

[2208.08454

- 14 EWPOs (linear SMEFT contr.)
- 4 high kinematic measurements

SFITTER dataset

Consider **Top** sector with **22** Wilson coefficients 122 datapoints many distributions (including boosted top)

Includes measurements with public likelihoods

[2312.1250

- includes $t\bar{t}, t\bar{t}Z, t\bar{t}W$ and SingleTop
- also top decays, charge asymmetries

2208.08454

14 EWPOs (linear SMEFT contr.) 4 high kinematic measurements

Single measurement likelihood

 $L_{\text{excl}} = \text{Pois}(d | p(C, \theta, b))$

Remove nuisance parameters via profiling or marginalization

$$L_{\text{prof}} = \max_{\theta, b} \mathscr{L}_{\text{excl}}$$

)) Pois(
$$b_{CR} | bk$$
) $\prod_{i} \mathscr{C}_{i}(\theta_{i}, \sigma_{i})$

$$\frac{1}{2\sigma}\Theta\left[x - (\mu - \sigma)\right]\Theta\left[(\mu + \sigma) - x\right]$$

$$L_{\rm marg} = \int d\theta db \ \mathscr{L}_{\rm excl}$$

Concerning correlations

Global analyses combine various different analyses

$$\mathcal{L}_{\text{excl,full}} = \prod_{c} \text{Pois}(d_c | p_c) \text{Pois}(b_{CR_c} | b_c k_c) \prod_{i} \mathcal{C}(\theta_{i,c}, \sigma_{i,c})$$

• Take into account correlations

$$C_{ij} = \frac{\sum_{\text{syst}} \rho_{ij} \sigma_{i,\text{syst}} \sigma_{j,\text{syst}}}{\sigma_{i,\text{exp}} \sigma_{j,\text{exp}}} \quad \text{with} \quad \sigma_{i,\text{exp}}^2 = \sum_{\text{syst}} \sigma_{i,\text{exp}} \sigma_{j,\text{exp}}$$

Assumption: Fully correlated systematics between measurements

SFITTER likelihood

Systematic uncertainties

Beam Background (Separate for each channel) ETmis Jets Leptons LightTagging Luminosity Pileup Trigger Tune bTagging partonShower tTagging

tauTagging

Concerning correlations

Global analyses combine various different analyses

$$\mathcal{L}_{\text{excl,full}} = \prod_{c} \text{Pois}(d_c | p_c) \text{Pois}(b_{CR_c} | b_c)$$

Take into account correlations

$$C_{ij} = \frac{\sum_{\text{syst}} \rho_{ij} \sigma_{i,\text{syst}} \sigma_{j,\text{syst}}}{\sigma_{i,\text{exp}} \sigma_{j,\text{exp}}} \quad \text{with} \quad \sigma_{i,\text{exp}}^2 = \sum_{\text{syst}} \sigma_{i,\text{exp}} \sigma_{j,\text{exp}}$$

Assumption: Fully correlated systematics between measurements

SFITTER likelihood

$\mathcal{L}_{c} k_{c} \prod \mathcal{C}(\theta_{i,c}, \sigma_{i,c})$ arXiv:2208.08454 1.00Full correlation for syst unc 0.75No correlation $\mathcal{L}_{\mathrm{scaled}}$ for syst unc $\sum \sigma_{i,\text{syst}}^2 + \sum \sigma_{i,\text{pois}}^2$ pois syst 0.250.00-5 $f_{GG}/\Lambda^2 \,[{\rm TeV}^{-2}]$

The five steps to happiness

- We finally extract constraints on the WCs from this likelihood
- SFITTER makes use of MCMC, but that is **slow**
- Alternative: Train a normalizing flow to speed this up
 - You should read [2411.00942]

Quick overview

Likelihood published in the **HistFactory** format

$$\mathcal{L}(n_{cb}, a_{\chi}|\eta, \chi) = \prod_{c \in \text{channels } b \in \text{bins}} \text{Pois}(n_{cb}|\nu_{cb}(\eta, \chi)) \prod_{\chi \in \vec{\chi}} \mathcal{C}_{\chi}(a_{\chi}|\chi)$$

- There is a large number of different nuisance parameters
- Analysed using dedicated python libraries such as pyhf and cabinetry
 - Question: How to make use of this within SFITTER?

Reproduction

Original: <u>arXiv:2006.13076</u>

Reproduction: arXiv:2312.12502

Uncertainties

- **Previously:** Uncertainties taken as given in the paper
- Now: Uncertainties extracted from profiling in pyhf
 - Implemented into SFITTER using the constraint terms
- **Problem:** Difficult to automate due to inconsistent naming conventions

Reproduced $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$ [%]	Paper $rac{\Delta\sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$
3.1	3.1
2.9	2.9
2.9	2.9
2.7	2.8
2.6	2.6
2.3	2.3
2.2	2.2
2.1	2.1
2.1	2.1
1.7	1.6
0.9	0.9
0.8	0.7
0.7	0.7
0.2	0.2
5.2	5.2
	Aeproduced $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$ [%] 3.1 3.1 3.1 2.9 2.9 2.9 2.7 2.6 2.3 2.2 2.1 2.1 2.1 2.1 1.7 0.9 0.8 0.7 0.2 0.2 5.2 5.2 5.2

Uncertainties

Uncertainty	Reproduced $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$ [%]	Paper $rac{\Delta\sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$
ttZ parton shower	3.1	3.1
$tWZ { m modeling}$	2.9	2.9
b-tagging	2.9	2.9
WZ/ZZ + jets modeling	2.7	2.8
$tZq \mathrm{modeling}$	2.6	2.6
Lepton	2.3	2.3
Luminosity	2.2	2.2
$Jets + E_T^{miss}$	2.1	2.1
Fake leptons	2.1	2.1
$t\bar{t}Z$ ISR	1.7	1.6
$t\bar{t}Z\mu_F$ and μ_r scales	0.9	0.9
Other backgrounds	0.8	0.7
Pile-up	0.7	0.7
$t ar{t} Z$ PDF	0.2	0.2
Stat	5.2	5.2

Uncertainties

Uncertainty	Reproduced $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$ [%]	Paper $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$
ttZ parton shower	3.1	3.1
$tWZ { m modeling}$	2.9	2.9
b-tagging	2.9	2.9
WZ/ZZ + jets modeling	2.7	2.8
$tZq \mathrm{modeling}$	2.6	2.6
Lepton	2.3	2.3
Luminosity	2.2	2.2
$Jets + E_T^{miss}$	2.1	2.1
Fake leptons	2.1	2.1
$t\bar{t}Z$ ISR	1.7	1.6
$t\bar{t}Z\mu_F$ and μ_r scales	0.9	0.9
Other backgrounds	0.8	0.7
Pile-up	0.7	0.7
$t ar{t} Z \; { m PDF}$	0.2	0.2
Stat	5.2	5.2

Uncertainties

Uncertainty	Reproduced $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$ [%]	Paper $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$
ttZ parton shower	3.1	3.1
$tWZ { m modeling}$	2.9	2.9
b-tagging	2.9	2.9
WZ/ZZ + jets modeling	2.7	2.8
$tZq \mathrm{modeling}$	2.6	2.6
Lepton	2.3	2.3
Luminosity	2.2	2.2
$Jets + E_T^{miss}$	2.1	2.1
Fake leptons	2.1	2.1
$t\bar{t}Z$ ISR	1.7	1.6
$t\bar{t}Z\mu_F$ and μ_r scales	0.9	0.9
Other backgrounds	0.8	0.7
Pile-up	0.7	0.7
$t ar{t} Z$ PDF	0.2	0.2
Stat	5.2	5.2

Uncertainties

Uncertainty	Reproduced $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$ [%]	Paper $rac{\Delta\sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$
ttZ parton shower	3.1	3.1
$tWZ { m modeling}$	2.9	2.9
b-tagging	2.9	2.9
WZ/ZZ + jets modeling	2.7	2.8
tZq modeling	2.6	2.6
Lepton	2.3	2.3
Luminosity	2.2	2.2
$Jets + E_T^{miss}$	2.1	2.1 🗸
Fake leptons	2.1	2.1
$t\bar{t}Z$ ISR	1.7	1.6
$t\bar{t}Z\mu_F$ and μ_r scales	0.9	0.9
Other backgrounds	0.8	0.7
Pile-up	0.7	0.7
$t \bar{t} Z$ PDF	0.2	0.2
Stat	5.2	5.2

Uncertainties

Uncertainty	Reproduced $\frac{\Delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$ [%]	Paper $rac{\Delta\sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}}$
ttZ parton shower	3.1	3.1
$tWZ { m modeling}$	2.9	2.9
b-tagging	2.9	2.9
WZ/ZZ + jets modeling	2.7	2.8
$tZq \mathrm{modeling}$	2.6	2.6
Lepton	2.3	2.3
Luminosity	2.2	2.2
$Jets + E_T^{miss}$	2.1	2.1 🗸
Fake leptons	2.1	2.1
$t\bar{t}Z$ ISR	1.7	1.6
$t\bar{t}Z\mu_F$ and μ_r scales	0.9	0.9
Other backgrounds	0.8	0.7
Pile-up	0.7	0.7
$t ar{t} Z$ PDF	0.2	0.2
Stat	5.2	5.2

Now: Separate the nuisance parameters in profile likelihood fit

Parameter scans with **Ecabinetry**

- NPs all behave very Gaussian, only a small number of exceptions
 - Validates Gaussian constraint terms for systematics

Concerning correlations

Correlations of systematics included in SFITTER are negligibly small

Currently: No correlations between uncertainties within a measurement

Concerning correlations

Correlations of systematics included in SFITTER are negligibly small

[arXiv:2312.12502]

Currently: No correlations between uncertainties within a measurement

Effect of new public likelihoods (1D fit)

- Constraints shift slightly after including new measurements
- Measurements barely affect strength of constraint
 - Only included total cross sections, distributions more promising

Results

Full global top fit

- All shown operators affected by one of the public likelihoods
- Visibly stronger constraints, especially for four fermion operators
- However: Strong constraints not due to measurements with likelihoods

Results

Boosted top measurement

- Comparison of leptons+jets vs. allhadronic (boosted top quarks)
- Both show clear energy-growing effects
- Strongest effect on constraints come from boosted measurements

Improving our fit

- Relatively simple top likelihood, mostly unfolded data
- Large effect from theory uncertainties
- Smooth results for both profiling and marginalization
- Similar improvements for more complicated Higgs likelihood

And more?

Improving our fit

- Relatively simple top likelihood, mostly unfolded data
- Large effect from theory uncertainties
- Smooth results for both profiling and marginalization
- Similar improvements for more complicated Higgs likelihood

And more?

Performance

Then vs Now

- For simple likelihoods sampling on both CPU and GPU is fast
- Most time spent on **profiling**
- Training and sampling finished in around a minute
- Furthermore: More complicated likelihoods sped up significantly
 - You should read [2411.00942]

	Тор	Higgs-gauge	Combine
Dimensions	22	20	42
Training batches	100	2000	6000
Samples	10M	200M	100M
Effective sample size	7.1M	97M	21M
Pre-scaling time	7s	3.5min	5.3min
Pre-training time	18s	1.7min	2.5min
Training time	36s	17.3min	1.2h
Sampling time	26s	14.8min	17.6min
Profiling time	17.7min	24.8min	3.7h
Number of CPUs	20	80	120
Accepted samples	37M	26.4M	60M
CPU sampling time	29min 49s	3h 23min	20h 50m
CPU profiling time	4min 43s	8min 24s	N/A

Concluding

- Summary: Uncertainties and correlations are essential to SMEFT analyses
 - Published likelihoods provide more flexibility when using experimental data
 - Validates assumptions made in previous analyses
 - Difficult to make use of this in global fits due to large number of measurements without likelihood
- However: Currently available likelihoods do not drive SMEFT constraints
 - Publications of more e.g. kinematic measurements would be nice
 - For a global fit, likelihoods from all kinds of measurements are needed

Appendix/Backup

Top operator definitions

Operator Definition

$\mathcal{O}_{Qq}^{1,8} \ \mathcal{O}_{Qq}^{1,1} \ \mathcal{O}_{Qq}^{3,8} \ \mathcal{O}_{Qq}^{3,1} \ \mathcal{O}_{Qq}^{3,1}$	$(\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}q_{i})$ $(\bar{Q}\gamma_{\mu}Q)(\bar{q}_{i}\gamma^{\mu}q_{i})$ $(\bar{Q}\gamma_{\mu}T^{A}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}\tau^{I}q_{i})$ $(\bar{Q}\gamma_{\mu}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{i})$
\mathcal{O}_{Qu}^{8} \mathcal{O}_{Qu}^{1} \mathcal{O}_{Qu}^{8} \mathcal{O}_{Qd}^{8}	$(\bar{Q}\gamma^{\mu}T^{A}Q)(\bar{u}_{i}\gamma_{\mu}T^{A}u_{i})$ $(\bar{Q}\gamma^{\mu}Q)(\bar{u}_{i}\gamma_{\mu}u_{i})$ $(\bar{Q}\gamma^{\mu}T^{A}Q)(\bar{d}_{i}\gamma_{\mu}T^{A}d_{i})$
$\mathcal{O}^{1}_{\phi Q}$ $\mathcal{O}^{3}_{\phi Q}$	$(\phi^{\dagger} i \overleftrightarrow{D_{\mu}} \phi) (\bar{Q} \gamma^{\mu} Q)$ $(\phi^{\dagger} i \overleftrightarrow{D_{\mu}} \phi) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$
$\mathcal{O}_{\phi t}$ $^{*}\mathcal{O}_{\phi t b}$	$(\phi^{\dagger} i \stackrel{\mu}{D_{\mu}} \phi) (\bar{t} \gamma^{\mu} t)$ $(\tilde{\phi}^{\dagger} i D_{\mu} \phi) (\bar{t} \gamma^{\mu} b)$

Operator	r Definition
\mathcal{O}_{tu}^{8}	$(\bar{t}\gamma_{\mu}T^{A}t)(\bar{u}_{i}\gamma^{\mu}T^{A}u_{i})$
${\cal O}^1_{tu}$	$(\bar{t}\gamma_{\mu}t)(\bar{u}_{i}\gamma^{\mu}u_{i})$
${\cal O}^8_{td}$	$(\bar{t}\gamma^{\mu}T^{A}t)(\bar{d}_{i}\gamma_{\mu}T^{A}d_{i})$
\mathcal{O}_{td}^1	$(\bar{t}\gamma^{\mu}t)(\bar{d}_{i}\gamma_{\mu}d_{i})$
\mathcal{O}_{Qd}^1	$(\bar{Q}\gamma^{\mu}Q)(\bar{d}_{i}\gamma_{\mu}d_{i})$
\mathcal{O}_{tq}^{8}	$(\bar{q}_i \gamma^\mu T^A q_i) (\bar{t} \gamma_\mu T^A t)$
\mathcal{O}^1_{tq}	$(\bar{q}_i\gamma^{\mu}q_i)(\bar{t}\gamma_{\mu}t)$
$^{*}\mathcal{O}_{tB}$	$(ar{Q}\sigma^{\mu u}t)\widetilde{\phi}B_{\mu u}$
${}^{*}\mathcal{O}_{tW}$	$(ar{Q}\sigma^{\mu u}t) au^{I}\widetilde{\phi}W^{I}_{\mu u}$
${}^{*}{\cal O}_{bW}$	$(\bar{Q}\sigma^{\mu\nu}b)\tau^{I}\phiW^{I}_{\mu\nu}$
$^{\ddagger}\mathcal{O}_{tG}$	$(ar{Q}\sigma^{\mu u}T^{A}t)\widetilde{\phi}G^{\mu u}_{\mu u}$

Higgs-gauge operator definitions (HISZ)

Operato	r Definition	Operator	r Definition
\mathcal{O}_{GG}	$\phi^{\dagger}\phi~G^{a}_{\mu u}G^{a\mu u}$	\mathcal{O}_{WW}	$\phi^{\dagger}\hat{W}_{\mu u}\hat{W}^{\mu u}\phi$
\mathcal{O}_{BB}	$\phi^{\dagger} \hat{B}_{\mu u} \hat{B}^{\mu u} \phi$	\mathcal{O}_W	$(D_{\mu}\phi)^{\dagger}\hat{W}^{\mu\nu}(D_{\nu}\phi)$
\mathcal{O}_B	$(D_{\mu}\phi)^{\dagger}\hat{B}^{\mu\nu}(D_{\nu}\phi)$	\mathcal{O}_{BW}	$\phi^{\dagger} \hat{B}_{\mu u} \hat{W}^{\mu u} \phi$
$\mathcal{O}_{\phi 1}$	$(D_{\mu}\phi)^{\dagger}\phi\phi^{\dagger}(D^{\mu}\phi)$	$\mathcal{O}_{\phi 2}$	$\frac{1}{2}\partial^{\mu}(\phi^{\dagger}\phi)\partial_{\mu}(\phi^{\dagger}\phi)$
\mathcal{O}_{3W}	$\mathrm{Tr}\Big(\hat{W}_{\mu\nu}\hat{W}^{\nu\rho}\hat{W}^{\mu}_{\rho}\Big)$	•	
${\cal O}_{\phi u}^{(1)}$	$\phi^{\dagger}(i \stackrel{\leftrightarrow}{D_{\mu}} \phi)(\bar{u}_R \gamma^{\mu} u_R)$	${\cal O}_{\phi Q}^{(1)}$	$\phi^{\dagger}(i \stackrel{\leftrightarrow}{D_{\mu}} \phi)(\bar{Q} \gamma^{\mu} Q)$
$\mathcal{O}_{\phi d}^{(1)}$	$\phi^{\dagger}(i \overleftrightarrow{D_{\mu}} \phi)(\bar{d}_R \gamma^{\mu} d_R)$	${\cal O}_{\phi Q}^{(3)}$	$\phi^{\dagger}(i \overleftrightarrow{D^{a}}_{\mu} \phi) (\bar{Q} \gamma^{\mu} \frac{\sigma_{a}}{2} Q)$
${\cal O}_{\phi e}^{(1)}$	$\phi^{\dagger}(iD_{\mu}\phi)(\bar{e}_{R}\gamma^{\mu}e_{R})$		
$\mathcal{O}_{e\phi,22}$	$\phi^{\dagger}\phi~ar{L}_{2}\phi e_{R,2}$	$\mathcal{O}_{e\phi,33}$	$\phi^{\dagger}\phi~ar{L}_{3}\phi e_{R,3}$
$\mathcal{O}_{u\phi,33}$	$\phi^{\dagger}\phi\bar{Q}_{3}\tilde{\phi}u_{R,3}$	$\mathcal{O}_{d\phi,33}$	$\phi^{\dagger}\phi\bar{Q}_{3}\phi d_{R,3}$
\mathcal{O}_{4L}	$(\bar{L}_1\gamma_\mu L_2)(\bar{L}_2\gamma^\mu L_1)$		

Higgs-gauge operator definitions (Warsaw)

Operator	Definition	Operator	Definition
$\mathcal{O}_{\phi G}$	$\phi^{\dagger}\phi G^{A}_{\mu u}G^{A\mu u}$	\mathcal{O}_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{ ho}$
$\mathcal{O}_{\phi B}$	$\phi^{\dagger}\phi B_{\mu u}^{\mu u}B^{\mu u}$	$\mathcal{O}_{\phi W}$	$\phi^{\dagger}\phi \dot{W}^{I}_{\mu\nu}W^{I\mu\nu}$
$\mathcal{O}_{\phi WB}$	$\phi^{\dagger} au^{I} \phi W^{I}_{\mu u} B^{\mu u}$		
$\mathcal{O}_{\phi\square}$	$(\phi^{\dagger}\phi)\Box(\phi^{\dagger}\phi)$	$\mathcal{O}_{\phi D}$	$(\phi^{\dagger}D^{\mu}\phi)^{*}(\phi^{\dagger}D^{\mu}\phi)$
$\mathcal{O}_{oldsymbol{\phi} e}$	$(\phi^{\dagger}i\overleftrightarrow{D_{\mu}}\phi)(\bar{e}_{i}\gamma^{\mu}e_{i})$	$\mathcal{O}_{\phi b}$	$(\phi^{\dagger}i\overleftrightarrow{D_{\mu}}\phi)(\bar{b}_{i}\tau^{I}\gamma^{\mu}b_{i})$
$\mathcal{O}_{\phi d}$	$\sum_{i=1}^{2} (\phi^{\dagger} i \overleftrightarrow{D_{\mu}} \phi) (\bar{d}_{i} \gamma^{\mu} d_{i})$	$\mathcal{O}_{oldsymbol{\phi} u}$	$\sum_{i=1}^{2} (\phi^{\dagger} i \overleftrightarrow{D_{\mu}} \phi) (\bar{u}_{i} \gamma^{\mu} u_{i})$
$\mathcal{O}_{\phi q}^{(1)}$	$\sum_{i=1}^{2} (\phi^{\dagger} i \overleftrightarrow{D_{\mu}} \phi) (\bar{q}_{i} \gamma^{\mu} q_{i})$	$\mathcal{O}_{\phi q}^{(3)}$	$\sum_{i=1}^{2} (\phi^{\dagger} i \overleftrightarrow{D_{\mu}} \phi) (\bar{q}_{i} \tau^{I} \gamma^{\mu} q_{i})$
$\mathcal{O}_{\phi l}^{(1)}$	$(\phi^{\dagger}i\overleftrightarrow{D_{\mu}}\phi)(\overline{l}\gamma^{\mu}l)$	$\mathcal{O}_{\phi l}^{(3)}$	$(\phi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\phi)(\bar{l}\tau^{I}\gamma^{\mu}l)$
$\mathcal{O}_{d\phi,33}$	$(\phi^{\dagger}\phi)(\bar{Q}_{3}b\phi)$	$\mathcal{O}_{u\phi,33}$	$(\phi^{\dagger}\phi)(\bar{Q}_{3}t\phi)$
$\mathcal{O}_{e\phi,22}$	$(\phi^{\dagger}\phi)(\bar{l}_{2}\mu\phi)$	$\mathcal{O}_{e\phi,33}$	$(\phi^{\dagger}\phi)(\bar{l}_{3}\tau\phi)$
\mathcal{O}_{ll}	$(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l)$		

Experin	nent	Energy [TeV]	$\mathcal{L} \left[\mathrm{fb}^{-1} ight]$	Channel	Observable	# Bins	New	Likelihood	QCD k-factor
CMS ATLAS	[79] [81]	8 8	19.7 20.2	еµ lj	$\sigma_{tar{t}}\ \sigma_{tar{t}}$				[80] [80]
CMS CMS ATLAS	[82] [83] [84]	13 13 13	137 35.9 36.1	lj 11 11	$\sigma_{tar{t}} \ \sigma_{tar{t}} \ \sigma_{tar{t}} \ \sigma_{tar{t}}$		\checkmark		[80] [80] [80]
ATLAS ATLAS	[85] [47]	13 13	36.1 139	aj lj	$\sigma_{tar{t}} \ \sigma_{tar{t}}$		\checkmark	\checkmark	[80] [80]
CMS	[86]	13.6	1.21	ll, lj	$\sigma_{t \bar{t}}$		\checkmark		[86]
CMS	[87]	8	19.7	lj	$\frac{1}{\sigma} \frac{d\sigma}{dp_T^t}$	7			[88–90]
CMS	[87]	8	19.7	11	$\frac{1}{\sigma} \frac{d\sigma}{dp_T^t}$	5			[88–90]
ATLAS	[91]	8	20.3	lj	$\frac{1}{\sigma} \frac{d\sigma}{dm_{t\bar{t}}}$	7			[88–90]
CMS	[82]	13	137	lj	$\frac{1}{\sigma} \frac{d\sigma}{dm_{t\bar{t}}}$	15	\checkmark		[45]
CMS	[92]	13	35.9	11	$\frac{1}{\sigma} \frac{d\sigma}{d\Delta y_{t\bar{t}}}$	8			[88–90]
ATLAS	[93]	13	36	lj	$\frac{1}{\sigma} \frac{d\sigma}{dm_{t}}$	9	\checkmark		[45]
ATLAS	[94]	13	139	aj , high- p_T	$\frac{1}{\sigma} \frac{d\sigma}{dm_{t\bar{t}}}$	13	\checkmark		
CMS	[95]	8	19.7	lj	A_{C}				[96]
CMS	[97]	8	19.5	11	A_{C}				[96]
ATLAS	[98]	8	20.3	lj	A_C				[96]
ATLAS	[99]	8	20.3	11	A_C				[96]
CMS	[100]	13	138	lj	A_{C}		\checkmark		[96]
ATLAS	[101]	13	139	lj	A_{C}		\checkmark		[96]
ATLAS	[48]	13	139		$\sigma_{t\bar{t}Z}$		\checkmark	\checkmark	[102]
CMS	103]	13	77.5		$\sigma_{t\bar{t}Z}$				[102]
CMS	[104]	13	35.9		$\sigma_{t \bar{t} W}$				[102]
ATLAS	105]	13	36.1		$\sigma_{t\bar{t}W}$		\checkmark		[102]
CMS	106]	8	19.7		$\sigma_{t \bar{t} \gamma}$		\checkmark		
ATLAS	107]	8	20.2		$\sigma_{tar{t}\gamma}$		\checkmark		

Exp.	\sqrt{s} [TeV]	\mathcal{L} [fb ⁻¹]	Channel	Observable	# Bins	New	Likelihood	QCD k-factor
ATLAS [108]	7	4.59	<i>t</i> -ch	$\sigma_{tq+ar{t}q}$				
CMS [109]	7	1.17 (e), 1.56 (μ)	<i>t</i> -ch	$\sigma_{tq+\bar{t}q}$				
ATLAS [110]	8	20.2	<i>t</i> -ch	$\sigma_{tq}, \sigma_{\bar{t}q}$				
CMS [111]	8	19.7	<i>t</i> -ch	$\sigma_{tq}, \sigma_{\bar{t}q}$				
ATLAS [112]	13	3.2	<i>t</i> -ch	$\sigma_{tq}, \sigma_{\bar{t}q}$				[113]
CMS [114]	13	2.2	<i>t</i> -ch	$\sigma_{tq}, \sigma_{\bar{t}q}$				[113]
CMS [115]	13	35.9	<i>t</i> -ch	$\frac{1}{\sigma} \frac{d\sigma}{d p_{T,t} }$	5	\checkmark		
CMS [116]	7	5.1	s-ch	$\sigma_{tar{b}+ar{t}b}$				
CMS [116]	8	19.7	s-ch	$\sigma_{tar{b}+ar{t}b}$				
ATLAS [117]	8	20.3	s-ch	$\sigma_{tar{b}+ar{t}b}$				
ATLAS [49]	13	139	s-ch	$\sigma_{tar{b}+ar{t}b}$		\checkmark	\checkmark	
ATLAS [118]	7	2.05	tW (2l)	$\sigma_{tW+\bar{t}W}$				
CMS [119]	7	4.9	tW (2l)	$\sigma_{tW+ar{t}W}$				
ATLAS [120]	8	20.3	tW (2l)	$\sigma_{tW+ar{t}W}$				
ATLAS [121]	8	20.2	tW (1l)	$\sigma_{tW+\bar{t}W}$		\checkmark		
CMS [122]	8	12.2	tW (2l)	$\sigma_{tW+ar{t}W}$				
ATLAS [123]	13	3.2	tW (1l)	$\sigma_{tW+ar{t}W}$				
CMS [124]	13	35.9	tW (eµj)	$\sigma_{tW+ar{t}W}$				
CMS [125]	13	36	tW (2l)	$\sigma_{tW+\bar{t}W}$		\checkmark		
ATLAS [126]	13	36.1	tZ	σ_{tZq}				
ATLAS [127]	7	1.04		F_0, F_L				
CMS [128]	7	5		F_0, F_L				
ATLAS [129]	8	20.2		F_0, F_L				
CMS [130]	8	19.8		F_0, F_L				
ATLAS [131]	13	139		F_0, F_L		\checkmark		

The five steps to happiness

Pre-scaling

p(x)

- run many parallel MCs to determine mean std.
- normalize distribution

Training

• •

- similar to MadNIS

Pre-training

•••

- use samples from pre-scaling to train network for a few steps
- better starting point for \bullet main training

• online + buffered training • refine samples using small number of MCMC steps

Profiling

- run maximization algorithm for each bin (L-BFGS)
- use gradient information

Sampling

- generate weighted samples
- keep track of points with highest likelihood in each bin

Hyperparameters

		Тор	Higgs-gauge	Combined
Architecture	Coupling blocks	RQ splines		
	Spline bins	16		
	Subnet layers	3		
	Hidden layers	64		
Pre-scaling	Number of samples	10240	40960	40960
	AIS steps	1500	5500	5500
	Target acceptance	0.33		
Pre-training	Batch size	1024		
	Epochs	15	6	6
	MCMC steps between batches	20	10	10
Training	Learning rate	0.001		
	Batch size	1024		
	Batches	100	2000	6000
	AIS steps	4	4	8
	Buffer capacity	262k		
	Ratio buffered/online steps	6		
Sampling	Batches	100	2000	1000
1 0	Batch size	100k		
	Marginalization bins, 1D	80		
	Marginalization bins, 2D	40		
	Profiling bins, 1D	40		
	Profiling bins, 2D	30	30	20
Profiling	Batch size	100k		
	Optimizer	LBFGS		
	Optimization steps	200		

