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Introduction
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EFTs

PLR and Wilks theorem

The problem: Wilks theorem sometimes does not apply to EFTs

Intuitions about how this happens, the consequences, and some solvable cases

Wrap-up



EFTs

 EFTs parameterise the low-energy contributions of unknown physics at mass scales higher than the
experiment, without assuming any specific UV-complete model

1. Reject SM: search for new physics and discover it’s low-energy behaviour

2. Constrain EFT param space: constrain specific theories post-hoc by their leading-order terms
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PLR

» N_EFT params ¢ € R’
~» N,-bin diff cross-sections x € R"x -

* PLR test-statistic T =i,

<L B
qg. = —2log (xfo) v p = arg max Z(c’; x) CL(ngS) = p (qc; c) dg
<g(x ‘ CMLE) ¢’ o ngs

» To calculate frequentist CL, we must know p(g.) when c is true, for every ¢

> Wilks theorem: p is a )(2—distribution under certain regularity conditions

« Assume Z(x|c) is Gaussian with mean u(c) and stat+syst covariance X~
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The problem

 Wilks not valid if model u(c’) encounters boundary when optimising for MLE
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% Cqe = argming X2<X; \/;>

EFT dominated by linear part
IM(C,) — XSM + C/xint
Cvp g also Gaussian distributed because of linear relationship

p(qc) IS a )(z—distribution

EFT dominated by quadratic part

x = xSM 4 xnew

Model cannot capture fluctuations that go below SM, because ¢ “x"V is

always +ve. Profiling encounters boundary at ¢y g = 0

p(q.) is partly )(2, partly something else



A single quadratic coefficient

 Below some threshold, density is still )(2

p(;) (%) g, < 0_2 > Intuition: small g. = small data fluctuation = inside boundary
; : X c o . .
: Correct : ( ) _ 2 » Above threshold, density is mixture of )(2 and Gaussian
) formula : P\dc) = L (1) o A 92 A > Intuition:)(2 if fluctuation T, Gaussian if {
e : = + , — = > —
2 Py (CIC ) 9e 0%’ 02 e o’ « Parameter 0622 can be calculated from {u, X }or
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Our method (equation) = = Qur method (Asimov) == n Wilks —-— x? threshold
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Consequence

1.00} © Our method (equation) ® Wilks
Expected *  Our method (Asimov)
95% coverage 0.98r ° 97.5%
O
0.96 O ]
95%
*) *) *) * ® ® ®
0947575 0.5 1.0 1.5 2.0 2.5

2
Ctrue

 Overcoverage around the SM if we assume Wilks

* At SM, exclusion rate is half of target, because half of datasets are “negative fluctuations” that encounter boundary
» 95% CL actually has coverage of 97.5%

* 95% CL Wilks becomes correct for hypotheses that are distinguishable from SM at level of 2> 20



Cases with 2 EFT coefficients

e Solution: partly closed-form, partly 1D numerical integration, very fast using Gaussian quadrature

 Again, params can be extracted from Asimov scan, and now include the correlation coefficient from the Hessian

* Intuition: for M quadratic params, divide param-space into oM regions, one which only 1 is free of boundary problem
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A single lin+quad coefficient

00 = Pu(qc,..) o - Wilks
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Purple: Assuming Wilks can cause under-coverage for lin+quad case

Red: We provide numerical method with = right coverage, but computationally expensive



Experimental work

« ATLAS and CMS investigating real-world impact and developing experimental checks/solutions

> Further details: https://indico.cern.ch/event/1452656/

Slight over-coverage in single-sign

top [arXiv: 2409.14982]
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= ATLAS

< 8f Vs=13TeV, 140 fo-'

— Data fit NLL scan values

—— Hybri dAsmo ftNLLsca values
----- Obs. 68% CL cl}) = [-0.0045, 0.0045]

Obs. 95% CL c‘ ) = [-0.0068, 0.0068]

Ongoing 1D analysis: over-and
under-coverage, with toy corrections
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Global EFT fits with various over- and under-coverage [CMS-
SMP-24-003]

p
J

fractional contribution f:

CMS Preliminary Fit without ttX, %2, 1-by-1 scans 36.3-138 fb (13 TeV)

|||||||||||||||||||||||||||||||||||||||||||||||||||

— 68% CL —95% CL e Bestfit —— Lin+Quad, asymptotic = Lin+Quad, pseudo-data

* 55 parameters tested

* 12 parameters with slight over-coverage
11 with slight under-coverage

7 where there is under-coverage on one
side and over-coverage on the other -
25 where the intervals are correct :
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Summary

Wilks theorem doesn’t apply to EFT fits that describe only positive deviations from SM

If all params dominated by linear or quadratic contributions:

> Qver-coverage around SM, conservative but reduces power to see new physics

» Provided correct distributions for < 2 EFT params

If linear and quadratic contributions both relevant:
> Can experience under-coverage, which is more problematic
> Continuous transition between contributions makes life hard
> Solved one-bin special case
> Provided numerical method that may be computationally cheaper than toys

Opportunities:

1. Change-of-variables can be automated for arbitrary num lin or quad params: oM integration regions of which 1 is Wilks-like
2. Analytic solution for lin+quad case, or extend numerical solution to multiple params
3. Quadratic + quartic case, interference between EFT params, non-Gaussian NPs...
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Backup



Geometric intuition

 Take observation vector x & RMN:

« Make life easier by working in co-ordinates where 1(c) is the origin and X is identity

> This turns x into uncorrelated normally distributed random variables 7 & RV

« Theng. = Z'Z — ¥y pVyg Where v = Z — k(c’) is residual between observation Z and prediction k(c’)

* |l.e. PLR is the difference in squared lengths between observation vector and residual at MLE
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Single linear case

| — k(C)
B p.(z) [0 contours]

-T -
\/ VMLEYMLE

q,. = 717 — Var eVMLE IS Pythagoras theorem

Origin 0 is true ¢

. Prediction curve k(c¢’) traces out a
straight line in Z-space

Observe some point 7 . This makes 4 /q. a projection of Z onto 1D subspace

MLE is the point of closest approach

Projecting NxD Normal dist gives 1D Normal, and
Three points trace a right-angled triangle squaring it makes ¢g. a y“-dist w/ 1 dof —> Wilks

General: project to N -hyperplane —> y* with N, dof
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Single quadratic case

Z, tKmino V7 Z7 Z7
|
|
|
|
|
|
|
|
_ |
Ikmin 1: .
Z1 Z1 Z1
e k(¢ still linear in prediction space « When sampile Z falls in perpendicular subspace, « When sample Z falls elsewhere, the point-of-
and passes through the origin same logic still holds, and we get ¥ parts nearest-approach is the SM boundary point

* No-long a right-angled triangle —> no longer a 1D
 Now turns around at SM orojection —> no Ionger)(z
* ¢.now solved using scalene triangle equation
2 2 = - 2 1712
q. = |7 —AXMLE — —2c(Z'-n)—c ‘n‘

... Where 7' - 11 is Gaussian
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Single lin+quad case

4

« As we profile ¢’, the relative contributions of
linear and quadratic components change in

quadratic way, and k(c’) traces a parabola

» Parallel to x™ as ¢’ — 0

2

new as C/ — 00

» Parallel to x

4

 Lin+quad case is smooth continuum —> no discrete modes (AFAIK)

» Contrast to quad case, could be decomposed into two discrete modes,
depending on whether MLE was a | -distance or point projection

> Forced to use change-of-variables formula

dz
rq.) = <Jg d_qc
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N(Z) dz(q.)

Difficult to find Z(q,_.) analytically, instead we provide

 numerical method that scales slightly better than toys



Forward process 7 — ¢g.

Normally distributed Scale+rotate+shift onto
random variables observation space Calculate PLR
_ _ A2 e 2 :
z~NQZ) - X - q. = y(c;x) — y(cpig:X)

CMLE

Analytically solve
optimisation for MLE

To calculate p(g,.) using change-of-variables, we must solve inverse process g, — {x} via latent step of ¢y g- For lin+quad case, this was
too difficult to solve analytically, so we used numerical method. Jacobian can be calculated analytically or automatically with e.g. JAX.
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Integration contours (lin x quad)
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Integration contours (quad x quad)
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Integration contours (1D)

Linear EFT model

| — k(C)
Bl p.(z) [0 contours]

— = (¢, CONtoOurs

SNSNNNNANNANN

s\\\\\ \\\\
\\\ NN

* & o

* & o O

000

LR K 4

* & o

Quadratlc EFT model

AN
\\\\\\\\\\\\
\\\\\\\\\

20

Lin + quad EFT model
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“ Toys === Our method (equation or Asimov) === Wilks - Z%

Lin x quad PDFs

PDF
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= Toys == = Qur method (equation or Asimov) === Wilks _

Quad x quad PDFs




Li n + quad PDFS T Toys === pg(Qc,.) === Wilks Lin + quad case (many bins)
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Project p,(2)
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