[SciPost Phys. Core 6, 013 \(2023\)](https://scipost.org/SciPostPhysCore.6.1.013)

F. Bernlochner, D. Fry, S. Menary, E. Persson

Asymptotic distributions of the PLR in EFTs

stephen.menary@manchester.ac.uk

Introduction

- 1. EFTs
- 2. PLR and Wilks theorem
- 3. The problem: Wilks theorem sometimes does not apply to EFTs
- 4. Intuitions about how this happens, the consequences, and some solvable cases
- 5. Wrap-up

EFTs

• **EFTs** parameterise the **low-energy contributions** of unknown physics at mass scales higher than the

- experiment, without assuming *any specific* UV-complete model
	- Reject SM: search for new physics and discover it's low-energy behaviour
	- 2. Constrain EFT param space: constrain specific theories post-hoc by their leading-order terms

• **PLR test-statistic**

$$
q_c = \chi^2(x;
$$

 \blacktriangleright N_c EFT params $c \in \mathbb{R}^{N_c}$ \blacktriangleright $N_{\scriptscriptstyle \mathcal{X}}$ -bin diff cross-sections $\scriptstyle \mathcal{X} \in \mathbb{R}^{N_{\scriptscriptstyle \mathcal{X}}}$

 $T \sum^{-1} \left(\chi - \mu(c) \right)$ is squared-length of vector in flat space with metric $g = \Sigma$ χ^2 is squared-length of vector $x-\mu(c)$ $g = \Sigma^{-1}$

 $(x; c) - \chi^2(x; c_{MLE})$

$$
\mathcal{L}(x|c) = \frac{\exp\left[-\frac{1}{2}\chi^2(x;c)\right]}{\sqrt{2\pi}|\Sigma|} \qquad \chi^2(x;c) = (x - \mu(c))^T \Sigma^{-1} (x - \mu(c))
$$

PLR

$$
q_c = -2\log \frac{\mathcal{L}(x|c)}{\mathcal{L}(x|c_{\text{MLE}})}
$$
 $c_{\text{MLE}} = \arg \max_{c'} \mathcal{L}(c';x)$ $CL(q_c^{obs}) = \int_{q_c^{obs}}^{\infty} p(q_c; c) dq$

- \triangleright To calculate frequentist CL, we must know $p(q_c)$ when c is true, for every c
- **Wilks theorem**: p is a χ^2 -distribution *under certain regularity conditions*
- Assume $\mathscr{L}(x | c)$ is Gaussian with mean $\mu(c)$ and stat+syst covariance Σ

The problem

$$
x = x^{\text{SM}} + c'^2 x^{\text{new}}
$$

Model cannot capture fluctuations that go below SM, because $c'^2 x^{\text{new}}$ is always +ve. Profiling encounters boundary at $c_{\rm MLE}^{}=0$

 $p(q_c)$ is partly χ^2 , partly something else

EFT dominated by linear part

 $\mu(c') = x^{SM} + c'x^{int}$

 $p(q_c)$ is a χ^2 -distribution c_{MLE} also Gaussian distributed because of linear relationship

EFT dominated by quadratic part

• Wilks not valid if model *μ*(*c*′) encounters **boundary** when optimising for MLE

- **Overcoverage around the SM** if we assume Wilks
- - ‣ 95% CL actually has coverage of 97.5%
- 95% CL Wilks becomes correct for hypotheses that are distinguishable from SM at level of $\,\gtrsim 2\sigma$

• **At SM, exclusion rate is half of target**, because half of datasets are "negative fluctuations" that encounter boundary

Cases with 2 EFT coefficients

- Solution: partly closed-form, partly 1D numerical integration, very fast using Gaussian quadrature • Again, params can be extracted from Asimov scan, and now include the *correlation coefficient* from the Hessian
-
- Intuition: for *M* quadratic params, divide param-space into 2^M regions, one which only 1 is free of boundary problem

Purple: Assuming Wilks can cause **under-coverage** for lin+quad case **Red:** We provide numerical method with \approx right coverage, but computationally expensive

• ATLAS and CMS investigating real-world impact and developing experimental checks/solutions

‣ Further details:<https://indico.cern.ch/event/1452656/>

Experimental work

ATLAS *Credit: Gianna Loeschcke Centeno* **CMS** *Credit: Brent R. Yates*

Summary

- **• Wilks theorem doesn't apply to EFT fits that describe only positive deviations from SM**
- If all params dominated by linear **or** quadratic contributions:
	- ‣ *Over-coverage* around SM, conservative but reduces power to see new physics
	- Provided correct distributions for ≤ 2 EFT params
- If linear **and** quadratic contributions both relevant:
	- ‣ Can experience *under-coverage*, which is more problematic
	- ‣ Continuous transition between contributions makes life hard
	- ‣ Solved one-bin special case
	- Provided numerical method that may be computationally cheaper than toys
- Opportunities:
	-
	- 2. Analytic solution for lin+quad case, or extend numerical solution to multiple params
	- 3. Quadratic + quartic case, interference between EFT params, non-Gaussian NPs…

1. Change-of-variables can be automated for arbitrary num lin *or* quad params: 2^M integration regions of which 1 is Wilks-like

Backup

Geometric intuition

- Take observation vector $x \in \mathbb{R}^{N_x}$
- Make life easier by working in co-ordinates where $\mu(c)$ is the origin and Σ is identity
	- \bm{z} This turns x into **uncorrelated normally distributed random variables** $\bar{z}\in\mathbb{R}^{N_x}$
- - i.e. **PLR is the difference in squared lengths** between observation vector and residual at MLE

• Then $q_c = \bar{z}^T\bar{z} - \bar{v}^T_{\rm MLE} \bar{v}_{\rm MLE}$ where $\bar{v} = \bar{z} - \bar{k}(c')$ is residual between observation \bar{z} and prediction $\bar{k}(c')$

Single linear case

- Prediction curve $\bar{k}(c')$ traces out a **·** Origin $\bar{0}$ is true straight line in \bar{z} -space straight line in \bar{z} -space
	- Origin $\bar{0}$ is true c
	- Observe some point \bar{z}
	- MLE is the point of closest approach
	- Three points trace a **right-angled triangle**
- $q_c = \bar{z}^T \bar{z} \bar{v}^T_{\text{MLE}} \bar{v}_{\text{MLE}}$ is Pythagoras theorem
- This makes $\sqrt{q_c}$ a projection of \bar{z} onto 1D subspace
- Projecting N_xD Normal dist gives 1D Normal, and squaring it makes q_c a χ^2 -dist w/ 1 dof \to **Wilks**
- General: project to N_c -hyperplane $\displaystyle ->\chi^2$ with N_c dof

Single quadratic case

 $\left| \bar{n} \right|^2$

• $\bar{k}(c')$ still linear in prediction space and passes through the origin

same logic still holds, and we get χ^2 parts

$$
q_c = |\bar{z}'|^2 - \chi_{\text{MLE}}^2 = -2c(\bar{z}' \cdot \bar{n}) - c^2
$$

... where $\bar{z}' \cdot \bar{n}$ is Gaussian

• Now turns around at SM

• When sample \bar{z} falls in perpendicular subspace,

- When sample \bar{z} falls elsewhere, the point-ofnearest-approach is the SM boundary point
- No-long a right-angled triangle \rightarrow no longer a 1D projection —> no longer *χ*2
- q_c now solved using scalene triangle equation

- As we profile c' , the relative contributions of linear and quadratic components change in quadratic way, and $\bar{k}(c')$ traces a parabola
	- Parallel to \bar{x}^{int} as $c' \to 0$
	- Parallel to \bar{x}^{new} as $c'^2 \to \infty$
- -
	-

‣ Contrast to quad case, could be decomposed into two discrete modes, depending on whether MLE was a \bot -distance or point projection

• **Lin+quad case is smooth continuum** —> no discrete modes (AFAIK)

 $\sigma(\bar{z})$ d $\bar{z}(q_c)$ *Difficult to find* $\bar{z}(q_c)$ analytically, instead we provide
numerical method that scales slightly hetter than to numerical method that scales slightly better than toys

‣ Forced to use change-of-variables formula

$$
p(q_c) = \oint \left| \frac{\mathrm{d}\bar{z}}{\mathrm{d}q_c} \right| \mathcal{N}(\bar{z}) \, \mathrm{d}\bar{z}(q_c)
$$

Forward process $\bar{z} \rightarrow q_c$

To calculate $p(q_c)$ using change-of-variables, we must solve inverse process $q_c \to \{x\}$ via latent step of c_{MLE} . For lin+quad case, this was too difficult to solve analytically, so we used numerical method. Jacobian can be calculated analytically or automatically with e.g. JAX.

Integration contours (lin x quad)

Integration contours (quad x quad)

$$
p_q(q_{c_{true}}) = \sum_{X \in \text{Classes}} \int_{\hat{Z}_\perp} \left| \frac{d\hat{Z}_1^{(X)}}{dq_{c_{true}}} \right| \mathcal{N}\left(\hat{Z}_1^{(X)}\right) \mathcal{N}\left(\hat{Z}_\perp\right) d\hat{Z}_\perp
$$
\n
$$
\text{Classes} = \{AA+, AA-, AB+, AB-, BA+, BA-, BB\}
$$
\n
$$
\hat{Z}_1 = \pm \sqrt{q_{c_{true}} - \hat{Z}_\perp^2}
$$
\n
$$
AB \quad \hat{Z}_1 = \pm \sqrt{q_{c_{true}} + 2\sqrt{1 - \rho^2} \kappa_2 \hat{Z}_\perp + (1 - \rho^2) \kappa_2^2}
$$
\n
$$
BA \quad \alpha_1 = \rho^2, \qquad \beta_1 = 2\sqrt{1 - \rho^2} (\rho \hat{Z}_\perp - \sqrt{1 - \rho^2} \kappa_1),
$$
\n
$$
\gamma_1 = (1 - \rho^2) \hat{Z}_\perp^2 + 2\rho \sqrt{1 - \rho^2} \kappa_1 \hat{Z}_\perp - (1 - \rho^2) \kappa_1^2 - q_{c_{true}}
$$
\n
$$
\hat{Z}_1 = -\frac{1}{2\alpha_1} \beta_1 \pm \frac{1}{2\alpha_1} \sqrt{\beta_1^2 - 4\alpha_1 \gamma_1},
$$
\n
$$
BB \quad \hat{Z}_1 = \frac{1}{2(\kappa_1 + \rho \kappa_2)} \left[-2\sqrt{1 - \rho^2} \kappa_2 \hat{Z}_\perp - (\kappa_1^2 + \kappa_2^2 + 2\rho \kappa_1 \kappa_2 + q_{c_{true}}) \right]
$$

Integration contours (1D)

Lin x quad PDFs

Quad x quad PDFs

PDF $[A.U.]$

 $q_{c_{\mathsf{true}}}$

Lin + quad PDFs

Increasing | Ctrue|

 C_{MLE}