Asymptotic distributions of the PLR in EFTs

SciPost Phys. Core 6, 013 (2023)

F. Bernlochner, D. Fry, <u>S. Menary</u>, E. Persson

stephen.menary@manchester.ac.uk

Introduction

- 1. EFTs
- 2. PLR and Wilks theorem
- 3. The problem: Wilks theorem sometimes does not apply to EFTs
- 4. Intuitions about how this happens, the consequences, and some solvable cases
- 5. Wrap-up

EFTS

- experiment, without assuming any specific UV-complete model
 - Reject SM: search for new physics and discover it's low-energy behaviour 1.
 - Constrain EFT param space: constrain specific theories post-hoc by their leading-order terms 2.

EFTs parameterise the low-energy contributions of unknown physics at mass scales higher than the

PLR

PLR test-statistic lacksquare

$$q_{c} = -2\log \frac{\mathscr{L}(x \mid c)}{\mathscr{L}(x \mid c_{\text{MLE}})} \qquad c_{\text{MLE}} = \arg \max_{c'} \mathscr{L}(c'; x) \qquad CL(q_{c}^{\text{obs}}) = \int_{q_{c}^{\text{obs}}}^{\infty} p(q_{c}; c) \, \mathrm{d}q$$

- To calculate frequentist CL, we must know $p(q_c)$ when c is true, for every c
- Wilks theorem: p is a χ^2 -distribution under certain regularity conditions
- Assume $\mathscr{L}(x \mid c)$ is Gaussian with mean $\mu(c)$ and stat+syst covariance Σ

$$\mathcal{L}(x \mid c) = \frac{\exp\left[-\frac{1}{2}\chi^2(x;c)\right]}{\sqrt{2\pi}\left|\Sigma\right|} \qquad \chi^2(x;c) = \left(x - \mu(c)\right)^T \Sigma^{-1} \left(x - \mu(c)\right)$$

$$q_c = \chi^2(x;$$

• N_c EFT params $c \in \mathbb{R}^{N_c}$ • N_x -bin diff cross-sections $x \in \mathbb{R}^{N_x}$

 χ^2 is squared-length of vector $x-\mu(c)$ in flat space with metric $g=\Sigma^{-1}$

; c) $-\chi^2(x; c_{\rm MLE})$

The problem

• Wilks not valid if model $\mu(c')$ encounters **boundary** when optimising for MLE

EFT dominated by linear part

 $\mu(c') = x^{\text{SM}} + c'x^{\text{int}}$

 $c_{\rm MLE}$ also Gaussian distributed because of linear relationship $p(q_c)$ is a χ^2 -distribution

EFT dominated by quadratic part

$$x = x^{SM} + c'^2 x^{new}$$

Model cannot capture fluctuations that go below SM, because $c'^2 x^{new}$ is always +ve. Profiling encounters boundary at $c_{\rm MLE} = 0$

 $p(q_c)$ is partly χ^2 , partly something else

- Overcoverage around the SM if we assume Wilks
- - 95% CL actually has coverage of 97.5%
- 95% CL Wilks becomes correct for hypotheses that are distinguishable from SM at level of $\gtrsim 2\sigma$

• At SM, exclusion rate is half of target, because half of datasets are "negative fluctuations" that encounter boundary

Cases with 2 EFT coefficients

- Solution: partly closed-form, partly 1D numerical integration, very fast using Gaussian quadrature \bullet Again, params can be extracted from Asimov scan, and now include the *correlation coefficient* from the Hessian
- Intuition: for M quadratic params, divide param-space into 2^M regions, one which only 1 is free of boundary problem

depending on correlation between x_1^{int} and x_2^{new}

A 9

Red: We provide numerical method with \approx right coverage, but computationally expensive

Experimental work

ATLAS and CMS investigating real-world impact and developing experimental checks/solutions

Further details: <u>https://indico.cern.ch/event/1452656/</u>

ATLAS Credit: Gianna Loeschcke Centeno

CMS Credit: Brent R. Yates

Summary

- Wilks theorem doesn't apply to EFT fits that describe only positive deviations from SM \bullet
- If all params dominated by linear **or** quadratic contributions:
 - Over-coverage around SM, conservative but reduces power to see new physics
 - Provided correct distributions for ≤ 2 EFT params
- If linear **and** quadratic contributions both relevant:
 - Can experience under-coverage, which is more problematic
 - Continuous transition between contributions makes life hard
 - Solved one-bin special case
 - Provided numerical method that may be computationally cheaper than toys
- Opportunities:

 - 2. Analytic solution for lin+quad case, or extend numerical solution to multiple params
 - 3. Quadratic + quartic case, interference between EFT params, non-Gaussian NPs...

1. Change-of-variables can be automated for arbitrary num lin or quad params: 2^{M} integration regions of which 1 is Wilks-like

Backup

Geometric intuition

- Take observation vector $x \in \mathbb{R}^{N_x}$
- Make life easier by working in co-ordinates where $\mu(c)$ is the origin and Σ is identity
 - This turns x into uncorrelated normally distributed random variables $\bar{z} \in \mathbb{R}^{N_x}$
- Then $q_c = \bar{z}^T \bar{z} \bar{v}_{MLE}^T \bar{v}_{MLE}$ where $\bar{v} = \bar{z} \bar{k}(c')$ is residual between observation \bar{z} and prediction $\bar{k}(c')$
 - i.e. PLR is the difference in squared lengths between observation vector and residual at MLE

Single linear case

• Prediction curve $\overline{k}(c')$ traces out a straight line in \overline{z} -space

- Origin $\overline{0}$ is true c
- Observe some point \overline{z}
- MLE is the point of closest approach
- Three points trace a **right-angled triangle**

- $q_c = \bar{z}^T \bar{z} \bar{v}_{MLE}^T \bar{v}_{MLE}$ is **Pythagoras theorem**
- This makes $\sqrt{q_c}$ a projection of \bar{z} onto 1D subspace
- Projecting N_xD Normal dist gives 1D Normal, and squaring it makes $q_c a \chi^2$ -dist w/ 1 dof —> Wilks
- General: project to N_c -hyperplane $->\chi^2$ with N_c dof

Single quadratic case

• $\bar{k}(c')$ still linear in prediction space and passes through the origin

same logic still holds, and we get χ^2 parts

• Now turns around at SM

• When sample \overline{z} falls in perpendicular subspace,

- When sample \overline{z} falls elsewhere, the point-ofnearest-approach is the SM boundary point
- No-long a right-angled triangle —> no longer a 1D projection —> no longer χ^2
- q_c now solved using scalene triangle equation

$$q_c = |\bar{z}'|^2 - \chi^2_{\text{MLE}} = -2c (\bar{z}' \cdot \bar{n}) - c^2$$

... where $\bar{z}' \cdot \bar{n}$ is Gaussian

- As we profile c', the relative contributions of linear and quadratic components change in quadratic way, and k(c') traces a parabola
 - Parallel to \bar{x}^{int} as $c' \to 0$
 - Parallel to \bar{x}^{new} as $c'^2 \to \infty$

• Lin+quad case is smooth continuum —> no discrete modes (AFAIK)

 Contrast to quad case, could be decomposed into two discrete modes, depending on whether MLE was a \perp -distance or point projection

Forced to use change-of-variables formula

$$p(q_c) = \oint \left| \frac{\mathrm{d}\bar{z}}{\mathrm{d}q_c} \right| \,\mathcal{N}(\bar{z}) \,\,\mathrm{d}\bar{z}(q_c)$$

Difficult to find $\overline{z}(q_c)$ analytically, instead we provide numerical method that scales slightly better than toys

Forward process $\overline{z} \rightarrow q_c$

To calculate $p(q_c)$ using change-of-variables, we must solve inverse process $q_c \rightarrow \{x\}$ via latent step of c_{MLE} . For lin+quad case, this was too difficult to solve analytically, so we used numerical method. Jacobian can be calculated analytically or automatically with e.g. JAX.

Integration contours (lin x quad)

Integration contours (quad x quad)

1

$$p_{q}(q_{c_{\text{true}}}) = \sum_{X \in \text{Classes}} \int_{\hat{Z}_{\perp}} \left| \frac{d\hat{Z}_{1}^{(X)}}{dq_{c_{\text{true}}}} \right| \mathcal{N}(\hat{Z}_{1}^{(X)}) \mathcal{N}(\hat{Z}_{\perp}) d\hat{Z}_{\perp}$$
Classes = {AA+, AA-, AB+, AB-, BA+, BA-, BB}
AA $\hat{Z}_{1} = \pm \sqrt{q_{c_{\text{true}}} - \hat{Z}_{\perp}^{2}}$
AB $\hat{Z}_{1} = \pm \sqrt{q_{c_{\text{true}}} - \hat{Z}_{\perp}^{2}}$
BA $a_{1} = \rho^{2}, \qquad \beta_{1} = 2\sqrt{1-\rho^{2}} \kappa_{2} \hat{Z}_{\perp} + (1-\rho^{2}) \kappa_{2}^{2}$
BA $a_{1} = \rho^{2}, \qquad \beta_{1} = 2\sqrt{1-\rho^{2}} (\rho \hat{Z}_{\perp} - \sqrt{1-\rho^{2}} \kappa_{1}), \qquad \gamma_{1} = (1-\rho^{2}) \hat{Z}_{\perp}^{2} + 2\rho \sqrt{1-\rho^{2}} \kappa_{1} \hat{Z}_{\perp} - (1-\rho^{2}) \kappa_{1}^{2} - q_{c_{\text{true}}} \hat{Z}_{1} = -\frac{1}{2a_{1}} \beta_{1} \pm \frac{1}{2a_{1}} \sqrt{\beta_{1}^{2} - 4a_{1}\gamma_{1}},$
BB $\hat{Z}_{1} = \frac{1}{2(\kappa_{1} + \rho \kappa_{2})} \left[-2\sqrt{1-\rho^{2}} \kappa_{2} \hat{Z}_{\perp} - (\kappa_{1}^{2} + \kappa_{2}^{2} + 2\rho \kappa_{1}\kappa_{2} + q_{c_{\text{true}}}) \right]$

Integration contours (1D)

Lin x quad PDFs

Quad x quad PDFs

PDF [A.U.]

 $q_{c_{
m true}}$

Lin + quad PDFs

Increasing *C*true