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Introduction
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1. EFTs


2. PLR and Wilks theorem


3. The problem: Wilks theorem sometimes does not apply to EFTs


4. Intuitions about how this happens, the consequences, and some solvable cases


5. Wrap-up



EFTs
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• EFTs parameterise the low-energy contributions of unknown physics at mass scales higher than the 
experiment, without assuming any specific UV-complete model


1. Reject SM: search for new physics and discover it’s low-energy behaviour


2. Constrain EFT param space: constrain specific theories post-hoc by their leading-order terms

  Feynman diagrams    Matrix elements  


  Cross-sections    

→ → ℳ = ℳSM + ∑
i

ciℳi + …

→ σ ∼ |ℳ |2 = |ℳSM |2 + ∑
i

ciℳ*SMℳi + ∑
i

c2
i |ℳi |

2 + ∑
ij

cicjℳ*i ℳj + …

ℒEFT = ℒSM +
(D5)

∑
i

ci

Λi
𝒪i +

(D6)

∑
i

ci

Λ2
i

𝒪i + …

σ = σSM + ∑
i

ciσint + ∑
i

c2
i σnew

i + ∑
ij

cicjσint
ij + …

Linear in ci Quadratic in ci Bilinear in ci, cjSM

Higher order 
perturbations
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• PLR test-statistic 

‣ To calculate frequentist CL, we must know  when  is true, for every 


‣ Wilks theorem:  is a -distribution under certain regularity conditions 

• Assume  is Gaussian with mean  and stat+syst covariance          

p(qc) c c
p χ2

ℒ(x |c) μ(c) Σ

qc = χ2(x; c) − χ2(x; cMLE)

ℒ(x |c) =
exp [− 1

2 χ2(x; c)]
2π |Σ |

χ2(x; c) = (x − μ(c))T Σ−1 (x − μ(c))  is squared-length of vector  
in flat space with metric 
χ2 x − μ(c)

g = Σ−1

qc = − 2 log
ℒ(x |c)

ℒ(x |cMLE)
cMLE = arg max

c′ 

ℒ(c′ ; x)

PLR
‣  EFT params  

‣ -bin diff cross-sections 

Nc c ∈ ℝNc

Nx x ∈ ℝNx

CL(qobs
c ) = ∫

∞

qobs
c

p (qc; c) dq



The problem
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x = xSM + c′ 
2xnew

EFT dominated by linear part

EFT dominated by quadratic part

Model cannot capture fluctuations that go below SM, because  is 
always +ve. Profiling encounters boundary at 

c′ 
2xnew

cMLE = 0

 is partly , partly something elsep(qc) χ2

μ(c′ ) = xSM + c′ xint

• Wilks not valid if model  encounters boundary when optimising for MLEμ(c′ )

 is a -distributionp(qc) χ2

 also Gaussian distributed because of linear relationshipcMLE



A single quadratic coefficient
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p (qc) =
p(1)

χ2 (qc) qc < c4

σ2
c2

1
2 p(1)

χ2 (qc) + 𝒢 (qc; − c4

σ2
c2

, 2c2

σc2 ) qc ≥ c4

σ2
c2

Correct 
formula

Toys

• Below some threshold, density is still 

‣ Intuition: small  = small data fluctuation = inside boundary


• Above threshold, density is mixture of  and Gaussian

‣ Intuition:  if fluctuation ↑, Gaussian if ↓


• Parameter  can be calculated from or 
extracted from Asimov profile

χ2

qc

χ2

χ2

σ2
c2 {μ, Σ}

Threshold @ , density is qc = 0 1
2 (p(1)

χ2 (qc) + δ(qc)) Threshold @ large , density is qc ≈ p(1)
χ2 (qc)Intermediate threshold & 

mixed distributions



Consequence
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• Overcoverage around the SM if we assume Wilks


• At SM, exclusion rate is half of target, because half of datasets are “negative fluctuations” that encounter boundary

‣ 95% CL actually has coverage of 97.5%


• 95% CL Wilks becomes correct for hypotheses that are distinguishable from SM at level of  ≳ 2σ



Cases with 2 EFT coefficients
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Lin x quad Quad x quad

Target coverage: . Actual:  
depending on correlation between  and 

95 % 95 − 97.5 %
xint

1 xnew
2

Large over-coverage at SM if we have many uncorrelated quad coefficients

• Solution: partly closed-form, partly 1D numerical integration, very fast using Gaussian quadrature

• Again, params can be extracted from Asimov scan, and now include the correlation coefficient from the Hessian

• Intuition: for  quadratic params, divide param-space into  regions, one which only  is free of boundary problemM 2M 1

Target coverage: . Actual: up to  
depending on correlation between  and 

95 % 98.75 %
xnew

1 xnew
2



A single lin+quad coefficient
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Purple:  Assuming Wilks can cause under-coverage for lin+quad case


Red:  We provide numerical method with  right coverage, but computationally expensive≈
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• ATLAS and CMS investigating real-world impact and developing experimental checks/solutions 
‣ Further details: https://indico.cern.ch/event/1452656/

Experimental work

ATLAS   Credit: Gianna Loeschcke Centeno CMS   Credit: Brent R. Yates

Slight over-coverage in single-sign 
top [arXiv: 2409.14982]1

2 Ongoing 1D analysis: over-and 
under-coverage, with toy corrections

3 Toy methods difficult to scale 
to multiple coefficients

Global EFT fits with various over- and under-coverage [CMS-
SMP-24-003]1

https://indico.cern.ch/event/1452656/
https://arxiv.org/abs/2409.14982
https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-24-003/
https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-24-003/


Summary
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• Wilks theorem doesn’t apply to EFT fits that describe only positive deviations from SM 

• If all params dominated by linear or quadratic contributions:

‣ Over-coverage around SM, conservative but reduces power to see new physics


‣ Provided correct distributions for  EFT params


• If linear and quadratic contributions both relevant:

‣ Can experience under-coverage, which is more problematic

‣ Continuous transition between contributions makes life hard

‣ Solved one-bin special case

‣ Provided numerical method that may be computationally cheaper than toys


• Opportunities:

1. Change-of-variables can be automated for arbitrary num lin or quad params:  integration regions of which 1 is Wilks-like

2. Analytic solution for lin+quad case, or extend numerical solution to multiple params

3. Quadratic + quartic case, interference between EFT params, non-Gaussian NPs…

≤ 2

2M



Backup
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Geometric intuition
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• Take observation vector  


• Make life easier by working in co-ordinates where  is the origin and  is identity


‣ This turns  into uncorrelated normally distributed random variables 


• Then  where  is residual between observation  and prediction 


• i.e. PLR is the difference in squared lengths between observation vector and residual at MLE

x ∈ ℝNx

μ(c) Σ

x z̄ ∈ ℝNx

qc = z̄T z̄ − v̄T
MLEv̄MLE v̄ = z̄ − k̄(c′ ) z̄ k̄(c′ )



Single linear case
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• Prediction curve  traces out a 
straight line in -space

k̄(c′ )
z̄

• Origin  is true 


• Observe some point 


• MLE is the point of closest approach


• Three points trace a right-angled triangle 

0̄ c

z̄
•  is Pythagoras theorem 


• This makes  a projection of  onto 1D subspace


• Projecting NxD Normal dist gives 1D Normal, and 
squaring it makes  a -dist w/ 1 dof —> Wilks 

• General: project to -hyperplane —>  with  dof

qc = z̄T z̄ − v̄T
MLEv̄MLE

qc z̄

qc χ2

Nc χ2 Nc

z̄T z̄

v̄T
MLEv̄MLE

qc



Single quadratic case
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• When sample  falls in perpendicular subspace, 
same logic still holds, and we get  parts

z̄
χ2

• When sample  falls elsewhere, the point-of-
nearest-approach is the SM boundary point


• No-long a right-angled triangle —> no longer a 1D 
projection —> no longer 


•  now solved using scalene triangle equation


… where  is Gaussian

z̄

χ2

qc

z̄′ ⋅ n̄

qc = | z̄′ |2 − χ2
MLE = − 2c (z̄′ ⋅ n̄) − c2 n̄ 2

•  still linear in prediction space 
and passes through the origin


• Now turns around at SM

k̄(c′ )



Single lin+quad case
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• As we profile , the relative contributions of 
linear and quadratic components change in 
quadratic way, and  traces a parabola


‣ Parallel to  as 


‣ Parallel to  as 

c′ 

k̄(c′ )

x̄int c′ → 0

x̄new c′ 
2 → ∞

• Lin+quad case is smooth continuum —> no discrete modes (AFAIK)


‣ Contrast to quad case, could be decomposed into two discrete modes, 
depending on whether MLE was a -distance or point projection


‣ Forced to use change-of-variables formula

⊥

p(qc) = ∮
dz̄
dqc

𝒩(z̄) dz̄(qc)
Difficult to find  analytically, instead we provide 
numerical method that scales slightly better than toys

z̄(qc)



Forward process z̄ → qc
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z̄ ∼ 𝒩(z̄) x

cMLE

qc = χ2(c; x) − χ2(cMLE; x)

Scale+rotate+shift onto 
observation space

Normally distributed 
random variables

Analytically solve 
optimisation for MLE 

Calculate PLR

To calculate  using change-of-variables, we must solve inverse process  via latent step of . For lin+quad case, this was 
too difficult to solve analytically, so we used numerical method. Jacobian can be calculated analytically or automatically with e.g. JAX.

p(qc) qc → {x} cMLE



Integration contours (lin x quad)
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Integration contours (quad x quad)
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Integration contours (1D)
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Lin x quad PDFs
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Quad x quad PDFs
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Lin + quad PDFs
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