Evanescent operators at the one-loop level

Presented by Jason Aebischer

Funded by the European Union

Introduction

- Origin of Evanescent operators
- 3 Application
- 4 Evanescent-free schemes
- 5 Summary

based on: 2208.10513, 2211.01379, 2401.16904 in collaboration with Marko Pesut and Zach Polonsky

Introduction

- 2 Origin of Evanescent operators
- 3 Application
- 4 Evanescent-free schemes

5 Summary

Motivation

Matching One-loop level

RGE running At two-loop level

Basis changes

At one-loop

1 Introduction

Origin of Evanescent operators

3 Application

4 Evanescent-free schemes

5 Summary

Example: Fierz transformations

Four-fermion (4F) operators

 $\mathcal{O}_{4F}=\mathcal{F}\mathcal{O}_{4F}$

$$\begin{split} \textbf{Example} \\ (\overline{q}_{1}^{\alpha}\gamma_{\mu}\textit{P}_{L}q_{2}^{\beta})(\overline{q}_{3}^{\beta}\gamma^{\mu}\textit{P}_{R}q_{4}^{\alpha}) = -2(\overline{q}_{1}\textit{P}_{R}q_{4})(\overline{q}_{3}\textit{P}_{L}q_{2}) \end{split}$$

 $d = 4 - 2\epsilon$ $\mathcal{O}_{4F} = \mathcal{F}\mathcal{O}_{4F} + E_{\mathcal{O}}$

Evanescent operators

Definition $E_{\mathcal{O}} = \mathcal{O}_{4F} - \mathcal{F}\mathcal{O}_{4F}$

Evanescent $E_{\mathcal{O}} \stackrel{d \to 4}{\to} 0$

Basis $\{O_j, E_i\}$

Evanescent operators: Complication

Ei

Finite contributions from one-loop insertions

Scheme dependence

ADMs and matching

Solution

Interpret finite contributions as one-loop shifts in ${\cal F}$

Traditional way

Basis $\{O_j, E_i\}$

Fierz identities $\mathcal{O}_i = \mathcal{F}\mathcal{O}_i + E_i$

Finite contributions

Resulting from *E_i*

Novel way: One-loop Fierz identities

Basis $\{\mathcal{O}_j\}$

Fierz identities $\mathcal{O}_i = \mathcal{FO}_i + \frac{\alpha_s}{4\pi} \sum_j a_j \mathcal{O}_j$

One-loop shifts

Expressed in physical basis

Computation

One-loop corrections $L\mathcal{O}, L\mathcal{FO}$

Taking difference LO - LFO = LE

Finite shifts

$$LE = \frac{\alpha_s}{4\pi} \sum_i a_i \mathcal{O}_i$$

Operators

Four-fermion operators

4q, SL, 4l

Dirac structures

vector, scalar, tensor

Colour

singlet and crossed

Four-fermi operators

Basis

 $\gamma_{\mu} P_{A} \otimes \gamma^{\mu} P_{B}, \quad P_{A} \otimes P_{B}, \quad \sigma_{\mu\nu} P_{A} \otimes \sigma^{\mu\nu} P_{A} \qquad A, B = L, R$

Contributions

QCD, QED

General scheme

 $\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}P_{L}\otimes\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_{L}=4(4-a_{1}\epsilon)\gamma_{\mu}P_{L}\otimes\gamma^{\mu}P_{L}$

Basis

 $\gamma_{\mu} P_{A} \otimes \gamma^{\mu} P_{B}, \quad P_{A} \otimes P_{B}, \quad \sigma_{\mu\nu} P_{A} \otimes \sigma^{\mu\nu} P_{A} \qquad A, B = L, R$

Contributions

QCD, QED

Dipoles $D_{q_1q_2G}^B = \frac{1}{g_s} m_q (\overline{q}_1 \sigma^{\mu\nu} P_B T^A q_2) G_{\mu\nu}^A$ $D_{f_1f_2\gamma}^B = \frac{1}{e} m_f (\overline{f}_1 \sigma^{\mu\nu} P_B f_2) F_{\mu\nu}$

1 Introduction

2 Origin of Evanescent operators

3 Application

4 Evanescent-free schemes

5 Summary

LQ matching

Scalar leptoquark $\mathcal{L}_{a\ell}^{LQ} = \bar{q} \left(\Gamma_{L}^{S} P_{L} + \Gamma_{R}^{S} P_{R} \right) \ell \Phi^{*} + \text{h.c.}$

Matching

SL operators

QCD corrections

 \sim 10 % corrections

JA/Crivellin/Greub: 1811.08907

Matching: Example

Issue

Matching: LQ basis

$$egin{aligned} \widetilde{O}^{AB}_S &= (\overline{q} \mathcal{P}_A \ell) (\overline{\ell} \mathcal{P}_B q) \ \widetilde{O}^A_T &= (\overline{q} \sigma_{\mu
u} \mathcal{P}_A \ell) (\overline{\ell} \sigma^{\mu
u} \mathcal{P}_A q) \end{aligned}$$

Running: SM basis

$$\begin{split} O_{S}^{AB} &= (\overline{q} P_{A} q) (\overline{\ell} P_{B} \ell) \\ O_{T}^{A} &= (\overline{q} \sigma_{\mu\nu} P_{A} q) (\overline{\ell} \sigma^{\mu\nu} P_{A} \ell) \end{split}$$

Combine results

One-loop Fierz

Basis change

Tree-level Fierz
$$R_0 = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{8} \\ -6 & \frac{1}{2} \end{pmatrix}$$

One-loop Fierz
$$R_{1} = \begin{pmatrix} 0 & \frac{N_{c}^{2}-1}{16N_{c}} \\ \frac{7-7N_{c}^{2}}{N_{c}} & 0 \end{pmatrix}$$

$$\left(\begin{array}{c}O_{S}^{AA}\\O_{T}^{A}\end{array}\right) = R_{0}\left(\begin{array}{c}\widetilde{O}_{S}^{AA}\\\widetilde{O}_{T}^{A}\end{array}\right) + \frac{\alpha_{s}}{4\pi}R_{1}\left(\begin{array}{c}\widetilde{O}_{S}^{AA}\\\widetilde{O}_{T}^{A}\end{array}\right)$$

1 Introduction

Origin of Evanescent operators

3 Application

4 Evanescent-free schemes

5 Summary

Issue: EV-to-physical mixing

Evanescent operators

Needed for mapping to physical basis

EV insertions

generate physical operators

Renormalization

Subtract physical contributions

Prescription method

Prescription $(\Gamma_{S_i}) \otimes (\Gamma_{S_j}) = C_{ij}^{k\ell}(\Gamma_{\mathcal{O}_k}) \otimes (\Gamma_{\mathcal{O}_\ell})$

Coefficients

 $\begin{aligned} C_{ij}^{k\ell} &= a_{ij}^{k\ell} + \varepsilon \, b_{ij}^{k\ell} \\ a_{ij}^{k\ell} &= \text{four-dim. part} \\ b_{ij}^{k\ell} &= \text{arbitrary} \end{aligned}$

Usage

Iterative application of relations \leftrightarrow no EV-to-physical mixing

Proof

Physical Operator Insertion

$$\begin{split} & Q = (\Gamma_1) \otimes (\Gamma_2) \\ & \Rightarrow \langle Q \rangle^{(1)} \sim (\Gamma' \Gamma_1 \Gamma') \otimes (\Gamma' \Gamma_2 \Gamma') = C_i(\Gamma_i) \otimes (\Gamma_i) \end{split}$$

EV definition

$$\begin{split} E &:= (\Gamma'\Gamma_{1}\Gamma') \otimes (\Gamma'\Gamma_{2}\Gamma') - C_{i}(\Gamma_{i}) \otimes (\Gamma_{i}) \\ \Rightarrow \langle E \rangle^{(1)} \sim (\Gamma''\Gamma'\Gamma_{1}\Gamma'\Gamma'') \otimes (\Gamma''\Gamma'\Gamma_{2}\Gamma'\Gamma'') - C_{i}(\Gamma''\Gamma_{i}\Gamma'') \otimes (\Gamma''\Gamma_{i}\Gamma'') \\ (\Gamma''\Gamma'\Gamma_{1}\Gamma'\Gamma'') \otimes (\Gamma''\Gamma'\Gamma_{2}\Gamma'\Gamma'') - C_{i}C_{i}'(\Gamma_{i}) \otimes (\Gamma_{i}) \end{split}$$

Vanishing mixing

$$E' := (\Gamma''\Gamma'\Gamma_1\Gamma'\Gamma'') \otimes (\Gamma''\Gamma'\Gamma_2\Gamma'\Gamma'') - K_i(\Gamma_i) \otimes (\Gamma_i)$$

$$\Rightarrow \langle E \rangle^{(1)} \sim \langle E' \rangle^{(1)} + (K_i - C_i C'_i)(\Gamma_i) \otimes (\Gamma_i)$$

 \rightarrow no mixing if $K_i = C_i C'_i$

Example: Scalar and Tensor 1L insertion

Prescription

 $(P_L\gamma^{\mu}\gamma^{\nu})\otimes(\gamma_{\nu}\gamma_{\mu}P_L) = (4-2\epsilon)(P_L)\otimes(P_L) + (1+\epsilon b_{t1})(\sigma^{\mu\nu}P_L)\otimes(\sigma_{\mu\nu}P_L)$

 $(\sigma^{\mu\nu} P_L \gamma^{\alpha} \gamma^{\beta}) \otimes (\gamma_{\beta} \gamma_{\alpha} \sigma_{\mu\nu} P_L) =$ $(48 + \epsilon b_{s2})(P_L) \otimes (P_L) + (12 + \epsilon b_{t2})(\sigma^{\mu\nu} P_L) \otimes (\sigma_{\mu\nu} P_L)$

Scalar 2L insertion

More complicated structure

$$(P_L \gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\beta}) \otimes (\gamma_{\beta} \gamma_{\alpha} \gamma_{\nu} \gamma_{\mu} P_L) = (4 - 2\epsilon) (P_L \gamma^{\alpha} \gamma^{\beta}) \otimes (\gamma_{\beta} \gamma_{\alpha} P_L) + (1 + \epsilon b_{t1}) (\sigma^{\mu\nu} P_L \gamma^{\alpha} \gamma^{\beta}) \otimes (\sigma_{\mu\nu} \gamma_{\beta} \gamma_{\alpha} P_L) = (64 - \{16 + b_{s2} + 48b_{t1}\}\epsilon) (P_L) \otimes (P_L) + (16 - \{2 + 16b_{t1} + b_{t2}\}\epsilon) (\sigma^{\mu\nu} P_L) \otimes (\sigma_{\mu\nu} P_L)$$

Advantages

Conceptually simpler

No insertions/renormalization of EVs

Independent of treatment of γ_5

Can be used in combination with HV

Algorithmic procedure

Automation

Results from literature

Two-Loop QCD ADM for $\Delta F = 1$

four-quark operators

Herrlich/Nierste: hep-ph/9604330

Two-Loop QCD ADM for $\Delta F = 2$ Double-insertions from $\Delta F = 1$ operators

Herrlich/Nierste: hep-ph/9604330

Various matching calculations

Fix scheme constants

1 Introduction

- Origin of Evanescent operators
- 3 Application
- 4 Evanescent-free schemes

Summary

Evanescent operators

Shifts in Fierz transformations

EV-free schemes

Prescription method

Simplifications

No EV renormalization, automation