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Motivation:

Standard Model Effective Field Theory (SMEFT) :

LsmerT = Lsm + AC( )0®) A2 ZC’(6)O(6) +0 <A3>

Includes SM fields only.
Follows SU(3)c x SU(2), x U(1)y.

Electroweak (EW) symmetry is linearly realized.

More general EFTs e.g. Higgs Effective Field Theory (HEFT), are also possible. In HEFT:

e 6 o6 ¢

SU(2)r x U(1)y non-linearly realized.

In the unitary gauge, HEFT reduces to the most general U (1), invariant Lagrangian.

Higgs boson is not embedded in a SU(2)1-doublet: — More general coupling of Higgs.

HEFT D SMEFT > SM [Buchalla and Cata, 2012]

In the energy scale much below the EW symmetry breaking, the relevant EFT is Low Energy
Effective Field Theory (LEFT)

LEFT can be derived from HEFT by integrating out the heavier particles — W*, Z, Higgs and top
quark. [Jenkins, Manohar and Stoffer, 2018]
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HEFT, SMEFT and LEFT

SMEFT (== -=-- . HEFT
2499 | ‘UV4Af >3701
operators ‘C_____ operators

"Up to dim-6
W, Z integrated
out

Running

Energy

LEFT
3701
operators

absent

@ More number of operator in HEFT/LEFT than in SMEFT = relations among HEFT/LEFT WCs

@ Relations among HEFT/LEFT WCs = indirect bounds

@ Violation of these relations = physics beyond dimension-6 SMEFT
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For semileptonic operators:
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@ More number of operator in HEFT/LEFT than in SMEFT = relations among HEFT/LEFT WCs

@ Relations among HEFT/LEFT WCs = indirect bounds

@ Violation of these relations = physics beyond dimension-6 SMEFT
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o SMEFT-predicted relations among LEFT/HEFT Wilson coefficients

@ SMEFT-predicted constraints on LEFT Wilson coefficients

@ SMEFT-predicted hints of possible new physics signals.




SMEFT predictions for semileptonic processes: Operators and matching

An example derivation of relations among U (1), invariant operators:

¢ : WC in HEFT in mass basis
Vector operators LLLL (HEFT) C : WC in SMEFT in flavor basis
NC Count
oun Vector operators LLLL (SMEFT)
ey 4 1oP diytdy) 81 (45
€eya,] 50 (e WGL)( LY L) (45) Operator Count
(¥, LL)oP | (e el (Tl (45) y . L
o e €177 | o) atal) 81 (45)
apt I/ L .. — . .
Elapal® | R DA 0 BLOS) | (oo | (o o) gt 81 (49
[ uuLL]a’B” (v WVL)(“L’W“L) 1 (45)
cc
[y )% | (@] (upatdy) 162 (81) I (1)
dp,
up = (VETuy oy (V) g
= (V)dy, = (Vi) dp

Verm = (V)TVE

Siddhartha Karmakar (TIFR) SMEFT predictions for semileptonic processes 5 / 18



SMEFT predictions for semileptonic processes: Relations among LEFT WCs

Matching among SMEFT and HEFT:

eV, )00 = (vphyim

Vit)nj ( [Cé;)}aﬁmn + [Clgg)]ocﬁmn ) ,

(
[€bunc]"™ = (V)™ (V)™ (610 = (e 10,
(

A afij im nj 1)yapmn 3)1aBmn
[€3ar]™? = (V™ v (ef 10 — e 1)
A afij im nj 1)japmn 3)1aBmn
[€tari)®® = (VEN™ (VEY ([e170mm + et )
AV 1aBij _ utyim (1 d\ng 1(3)1aBmn
[ern]®™ =2V )™ (VE)™ [Co 1™ tachischer, Crivellin, Fael and Greub, 2016]

Jenkins, Manohar and Stoffer, 2018
Vit VéKM for down-aligned basis or 1 for up-aligned basis L /

V]fl . Vokwm for up-aligned basis or 1 for down-aligned basis

Eliminating SMEFT WCs from the above relations:

Category Analytic relations Count
Vik [l Vi = Ul (€501, Uss | 81 (45)

LLLL Vik [€2an ] Vi = Ul [€,00)779 Ups | 81 (45)
Vik (€)M = [el,,)*Y Uy — Udo [€),,,,)7"7 | 162 (81)

@ These relations are independent of the SMEFT flavor basis choice.

@ The WCs in HEFT here are in the mass basis and are, in principle, measurable. Thus, relations
among them do not depend on the SMEFT basis choice.
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@ We find all the SMEFT-predicted relations among the WCs of semileptonic HEFT operators:

e 7 sets of relations for vector operators (5 x 81 for neutral current, 2 x 162 for charged current)
e 9 sets of relations for scalar and tensor operators (4 x 162 for scalars, 5 x 162 for tensors)
e 2 sets of relations for to Z, W couplings (1 x 18 for quarks and 1 x 18 for leptons)

(5 x 81) 4 (2 x 162) 4 (4 x 162) + (5 x 162) + 18 + 18 = 2223

@ These relations are powerful, basis-independent expressions of the implications of SMEFT gauge
invariance on flavor physics observables.
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Bause et al. 2020

Bause et al. 2020

/\
SK, Dighe, Gupta %

Cata, Jung, 2015

Burges et al. 2021

Cata, Jung 2015

Pomarol 2015

Category Analytic relations Count
Vi (€0, 119 Vi = o [€)arr)?” Usp 81 (45)
LLLL Vik [é:;/;if L ]&Bkl VﬂT' — U{in [év L r]poij Uaﬁ 81 (45)
Vi [€111°P4 = (1,179 Uy — Ul [6441,1)7%3 162 (81)
’ RRRM No relations ‘ ‘
\>éﬁ~ﬂ\ (€Y, r]*7 = UL, (€Y1 51777 Upg 81 (45)
el LRl = U;réﬂ [€)ur Rl Upp 81 (45)
e} p*" =0 —162 (81)
\%L Elane) 4 = VL g7 vy o1 (45
Scalar (dz\z)\ Vir (€20 rerr) ™ = [€RL L r]*"Y Ups 162 (81)
(€20 rLrL]™"Y =0 162 (81)
W [égu,RLRL}aﬁik Vij = —[€30r1]* Ups 162 (81)
e, RLLR}aﬁij = 162 (81)
[ afij =0 324 (162
Tensor (dr) e ed, an (162)
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[Cer, W] Upp = % cos O ([ec, 2]% = UL, (64,2177 Usp) | 18 (9)
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Indirect bounds on LEFT from SMEFT predicted relations

We consider the ‘UV4f’ scenario, where UV physics only involve four-fermionic operators:
HEFT — LFFT : ¢ — C -
AN ) e (P I

@ Six WCs on each sides, 3 complex and 3 real, total 18 parameters.

@ We take the 9 whose direct bounds are the best and find indirect bounds for the others.

YI=a1Xi+ 01 Xo+ a1 Xs+d1 Xy +e1 X5+ f1Xe+ 1 X7 + h Xs + i1 X9
Yo = a0 Xy + bo Xo + o X3 + do Xy + ea X5 + foXg 4+ 9o X7 + hoXg + 12 X9
Ys = a3 X1 + b3Xo 4+ 3 X3 + d3s Xy + e3 X5 + f3X6 + 93X7 + hs Xg + i3 X9

Direct bound: Bounds calculated directly based on the observed data (X;)
Indirect bound: Bounds derived using the SMEFT-predicted relations (Y;)

In this case the best direct bounds are there for the following WCs

Re ([Carc]®'?), Tm ([Crarr]®'?) s Re ([Crarr]®"™)

Im ([Crar)?'?) s Re ([Crarr]?) s Im ([Crarr]?*)

Re ([CZLLL]mu), Im([cglLL]zzlz) , [Ch)!
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Indirect bounds on WCs of (vpv,vr)(ury7ur)
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SMEFT implications for observed deviations and anomalies

@ The SMEFT-predicted relations implies that it is in general not consistent to assume a single
non-zero WC to explain an excess in a certain channel.

@ For certain operators a non-zero WC must be accompanied by multiple other WCs that are
non-vanishing.

~V 2217 ~V 22kl
[€Vur0)?7 = Vig [y )M V)

For the above relation, there are 6 linear relation among 12 in general complex WCs (say C; to C12).
If one of these WCs, (say C}) is found to be nonzero, we can write:

Cr = a1C01 + 010 + 103 + d1Cy + e1C5 + f1Cs
Cs = a2Cy + b2Cs + 203 + daCy + e2C5 + f2Cs
Cy = a3C1 + b3C2 + c3C3 + d3Cy + e3C5 + f3C6
Cho = a4C1 4 b4Cs 4 c4Cs 4+ d4Cy + e4C5 + f1Cq
C11 = a5C1 + bsCa + c5C3 + d5Cy + e5C5 + f5C6
Cr2 = agC1 + bgC2 + c6C3 + dgCy + e6C5 + f6Co

@ Then, as long as the coefficient of C is nonzero in all these equations, all the 6 coefficients C7 to
(19 also have to be nonzero.

@ Thus, the nonvanishing nature of C necessarily implies that overall at least 7 WCs are
nonvanishing in principle.
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Implications of observed excess in B — Kvv,

Assuming [0V, 1%¥23 as possible explanation of the observed excess in B — Kvv:
\%4 523 14 (323 |4 (323
[CI/dLL}O [Cl/r]LL}O [CI/dLL]Q
0.002 0.002 0.002
£ 0.000 £ 0.000 £ 0.000
—0.002 —0.002 —0.002
—0.002 0.000 0.002 —0.002 0.000 0.002 —0.002 0.000 0.002
Re Re Re
(LFU) a = f (LFUV) o # B (LFV)

[Courr]® = Vig LLL]O[BQSV:L + ..

Fori=2, j=3  [CV,.]*% ~0.97[CY, ]%F%.

e

Fori=1, j =3, [CY. L] ~ 0.22[CY; %%

= Possible excess in t — ce®e?, t — ue®e’

[CHE S = War (€ o2 e a2

= Possible excess in b — cfv, b — ulv

[Bause, Gisbert, and Hiller, 2024]
[Bhattacharya, Jahedi, Nandi and Sarkar, 2023]

[SK, Dighe, Gupta, arXiv:2404.10061]
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Implications of R(D™)) anomalies
Assuming [0} ;13323 as possible explanation of R(D™)):

[CE'L]:H'Z:%

(CY = Vi[O 15 — [CLLLP“S} Y [[CZILLP”S - [CXC[LLP”B} Ve [[CXMPW Y

@ Possible NP inb — dr7, b — s77, b — dvv and b — svv
e These possible NP effects can manifest in B — 77, B; — 77, B — K®7r7r, B —» K®uw etc.

[Alonso, Grinstein and Camalich, 2015]
[Crivellin, Miiller and Ota, 2017]
[Greljo, Salko, Smolkovic and Stangl, 2023]

[SK, Dighe, Gupta, arXiv:2404.10061]
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Comments on the SMEFT-predicted relations and indirect bounds

@ The relations are derived from leading order matching at dimension 6

@ The relations and hence the indirect bounds will get modified when

e If RG running and one loop matching effects are significant,
o if there are large contributions from dimension 8 operators.

@ A global-fit using the relations can give better indirect bounds. In our analysis, we focus on
decoupling several connected sectors in flavor physics and get significant insight into the
implications of SMEFT gauge invariance on flavor observables.
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Summary and outlook

We find 17 classes (2223 with generation indices) of relations among LEFT WCs based on the
SU(2)r x U(1)y invariance of SMEFT.

@ Based on these relations, we find indirect bounds on WCs which are in some cases weakly
constrained in direct experiments.

@ The relations and the indirect bounds do not depend on choice of SMEFT flavor basis.

e Our indirect bounds on many di-neutrino operators e.g. (7y,v)(dv,d), (Py,v) (@),
(Uyuv)(57us) etc., are much better compared to the direct available bounds from atmospheric
neutrino oscillations.

@ From the observed excess in B — Kvv, we expect enhanced branching ratios for dilepton top
decays and charged-current semileptonic B decays.

e From R(D™), we predict enhancement for di-tauon and di-neutrino B decays.

@ A further study can be done to consider the effects of RG running, one-loop matching and terms
with suppressed CKM elements.

@ Similar phenomenology analysis will also be interesting for other processes such as four-quark,
charged LFV etc. with the inclusion of scalar, tensor and right handed operators,
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Thank you for your attention!
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