Towards the HEFT-hedron: the complete set of positivity bounds on longitudinal gauge-Higgs scattering at NLO

Debsubhra Chakraborty

Tata Institute of Fundamental Research(TIFR), Mumbai

Collaborators: Susobhan Chattopadhyay, Rick S. Gupta Based on: arXiv:2412.XXXXX

8th General Meeting of the LHC EFT Working Group 2 December, 2024

- ¹ More than a decade has passed since Higgs boson Discovery
- ² No new particles seen in LHC ! New Physics soon or far in the future?
- New Physics may come from precision measurements rather than new on-shell states.
- ⁴ Motivates us to understand the new Physics effects by utilizing standard EFT techniques to Standard Model(SM).
- **6** EFT Lagrangian built out of higher dimensional operators \mathcal{O}_i s with coupling c_i s,

$$
\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_i \frac{c_i}{\Lambda^{[O_i]-4}} O_i
$$

⁶ Experimental goal: To constrain the space of the Wilson coefficients (WC), *cⁱ* s.

• Experimental goal: To constrain the space of the Wilson coefficients, *cⁱ* s.

• Experimental goal: To constrain the space of the Wilson coefficients, *cⁱ* s.

A. Adams et al. '06

Positivity bounds

$$
M(s_{*}) = \frac{1}{2\pi i} \oint_{C_{1}} \frac{ds' M(s')}{(s' - s_{*})} = \frac{1}{2\pi i} \oint_{C_{2}} \frac{ds' M(s')}{(s' - s_{*})}
$$

$$
\frac{1}{2} \frac{\partial^{2}}{\partial s_{*}^{2}} M(s_{*}) = \frac{1}{2\pi i} \oint_{C_{2}} \frac{ds' M(s')}{(s' - s_{*})^{3}}
$$

$$
= \frac{1}{\pi} \int_{4m^{2}}^{\infty} ds' \ln M(s') \left(\frac{1}{(s' - s_{*})^{3}} + \frac{1}{(s' + s_{*} - 4m^{2})^{3}}\right) > 0
$$

Optical theorem: ${\sf Im} M(s) = \sqrt{s(s-4m^2)}\sigma_{\mathcal{T}}(s)$

$$
\frac{1}{2}\frac{\partial^2}{\partial s^2}M(s,t)|_{t\to 0}=c>0
$$

Constrains WCs of irrelevant operators of EFTs that give rise to at least s^2 growth in $\mathcal{M}(s, t \to 0)$.

Froissart-Martin Bound: $\lim_{s\rightarrow\infty}|\mathcal{M}(s,t\rightarrow0)|/s^2=0$

′)

Figure: Analytic structure of M(*s*) in complex *s* plane.

Figure: Positivity constraints puts theoretical priors in the space of WCs

Positivity Bounds on Dim-8 SMEFT operators

Figure: Positivity Bounds on WCs of SMEFT Dim-8 operators. Fig courtesy: Q. Bi et al. (2019)

- Positivity constraints for Dim-8 SMEFT operators are well studied.
- For Dim-8 bosonic SMEFT operators including aQGCs see Remmen, Rodd'19; Q. Bi, Zhang, Zhou'19, Zhang, Zhou'19, D. Ghosh et al.'22.
- For Dim-8 fermionic SMEFT operators see Remmen, Rodd'20.

Positivity bounds on HEFT

• In this work, we explore positivity constraints on space of WCs of HEFT operators contributing to longitudinal gauge-Higgs scattering process such as the following processes,

 $V_L V_L \rightarrow V_L V_L$, $V_L V_L \rightarrow hh$, $V_L V_L \rightarrow V_L h$, $hh \rightarrow hV_L$ and $hh \rightarrow hh$ $(V \in \{W^{\pm}, Z\})$.

• Most general parametrization of s^2 piece of these amplitudes given by HEFT, not SMEFT!

Figure: SMEFT \subset HEFT for a given order of EFT expansion.

For UV perspective: Ref. Falkowski, Rattazzi '19; Alonso, Jenkins, Manohar '15, '16; Cohen, Craig, Lu, Sutherland '20

Table: List of SMEFT dim-8 operators.

- In SMEFT at Dim-8, only 3 operators contribute to *s* 2 -piece of gauge-Higgs scattering process.
- HEFT lagrangian contains 15 operators that give rise to *s* 2 pieces. (identified using Goldstone boson equivalence theorem.)
- These HEFT operators are more important than SMEFT as they already appear at NLO.

Table: List of HEFT operators at NLO giving rise to *s* 2 growth.

- We will obtain positivity constraints on 15-dimensional space of these WCs.
- Dim-8 SMEFT is a 3-dimensional sub-space.
- Gauge-Higgs scattering is the only process that can grow as *s* 2 in HEFT at NLO.
- This is the complete set operators that are subject to positivity bounds.

Table: List of HEFT operators at NLO giving rise to *s* 2 growth.

Anomalous Couplings

- These 15 HEFT operators can be mapped to the following 15 anomalous couplings.
- So, constraints derived on WCs of 15 HEFT operators can be translated to space of these 15 anomalous couplings.¹

$$
\Delta \mathcal{L}_{QGC} = g^2 c_{\theta_W}^2 \left[\delta g_{ZZ1}^Q Z^\mu Z^\nu W_\mu^- W_\nu^+ - \delta g_{ZZ2}^Q Z^\mu Z_\mu W^{-\nu} W_\nu^+ \right] \n+ \frac{g^2}{2} \left[\delta g_{WW1}^Q W^{-\mu} W^{+\nu} W_\mu^- W_\nu^+ - \delta g_{WW2}^Q (W^{-\mu} W_\mu^+)^2 \right] + \frac{g^2}{4c_{\theta_W}^4} h_{ZZ}^Q (Z^\mu Z_\mu)^2 \n\Delta \mathcal{L}_{(\partial h)^2 V^2} \supset g_{Z1}^{hh} \frac{g^2}{c_{\theta_W}^2} \frac{(\partial_\nu h)^2 Z_\mu Z^\mu}{v^2} + g_{Z2}^{hh} \frac{g^2}{c_{\theta_W}^2} \frac{\partial_\mu h \partial_\nu h}{2v^2} Z^\mu Z^\nu + g_{W1}^{hh} g^2 \frac{(\partial_\nu h)^2}{v^2} W^{+\mu} W_\mu^- \n+ g_{W2}^{hh} g^2 \frac{\partial_\mu h \partial_\nu h}{2v^2} (W^{+\mu} W^{-\nu} + h.c.) \n\Delta \mathcal{L}^{hV^3} \supset g_{Z\theta_W}^{\partial hV^3} \frac{g^3}{2c_{\theta_W}} \frac{\partial_\mu h}{v} Z_\nu (W_\mu^+ W^{-\nu} - h.c.) + g_{W2}^{\partial hV^3} \frac{g^3}{2c_{\theta_W}} \frac{\partial_\mu h}{v} Z_\nu (W_\mu^+ W^{-\nu} + h.c.) \n+ g_{W3}^{\partial hV^3} \frac{g^3}{2c_{\theta_W}} \frac{\partial_\mu h}{\partial z} Z_\mu W_\mu^+ W^{-\mu} + g_Z^{\partial hV^3} \frac{g^3}{2c_{\theta_W}^3} \frac{\partial_\mu h}{v} Z_\mu Z_\nu Z^\nu \n\Delta \mathcal{L}^{h^3 V} = g^{\partial h^3 V} \frac{g}{2c_{\theta_W}^2} \frac{\partial_\nu h \partial^\nu h \partial_\mu h Z^\mu}{\partial z} , \quad \Delta \mathcal{L}^{(\partial h)^4} = \frac{g^{(\partial h)^4}}{V^4} , \quad \partial_\mu h \partial^\mu h \partial_\nu h \partial^\nu
$$

Positivity bounds on HEFT at NLO

- . We calculate contributions from HEFT operators at NLO to longitudinal gauge-Higgs scattering amplitude.
- \bullet We present coefficients of s^2 terms

in these amplitudes using the following matrix equation.

Positivity bounds on HEFT operators at NLO

To derive the positivity constraints we utilize the following, $\alpha_i\beta_i\alpha_k^*\beta_l^*{\cal K}_{ijkl} > 0$ for $\forall \alpha, \beta$

See for example Remmen and Rodd'19,' 20.

We extract positivity constraints on the WCs from the positive-definiteness of the matrix,

$$
(\gamma_{\beta})_{ij} = \beta_j \beta_l^* \mathcal{K}_{ijkl} \succ 0 \text{ for } \forall \beta
$$

For example, with, $\beta_2, \beta_3 = 0$, a 2×2 principle sub-matrix of γ_β is given by,

Positive definiteness of this matrix, gives us the following constraints,

$$
a_1, a_6, a_{11}, a_{13} > 0
$$

 $4a_7^2 < (\sqrt{a_6 a_{11}} + \sqrt{a_1 a_{13}})^2$

In particular, if the WCs of the RHS is zero, then the WCs of LHS must vanish.

Positivity bounds on HEFT operators at NLO

Using correlations between SMEFT couplings the constraints can be projected into the 3D SMEFT parameter space, reproducing the well-known bounds on $\widehat{\text{SMEF}}$ WCs¹.

Magnitude of WCs of all CP-odd operators are bounded by CP-even WCs.

 a_i s are linear combinations of WCs, c_i s.

 $a_1 = 16(c_1 + c_2)$ $a_2 = 4(2c_1 + c_2)$ $a_3 = 8c_1 + 2c_2 + c_3 + 4c_4$ $a_4 = 8c_2$ $a_5 = 16(c_1 + c_2) + 8(c_3 + c_4) + 4c_5$ $a_6 = 2(4c_2 + c_3)$ $a_7 = c_6 + c_7/2$ $a_8 = 2c_{11}$ $a_9 = c_7$ $a_{10} = -c_8/4$ $a_{11} = -2c_{10}$ $a_{12} = 2(c_6 + c_7 + c_9/2)$ $a_{13} = -(2c_{10} + c_{12})$ $a_{14} = (2c_{11} + c_{13})$ $a_{15} = -c_{14}/2$ $a_{16} = 4c_{15}$

¹Remmen and Rodd'2019 and Q.Bi et al.'20.

DC, S.Chattopadhyay, R.S.Gupta (in prep)

Positivity bounds on HEFT operators at NLO

¹Remmen and Rodd'2019 and O.Bi et al.'20.

DC, S.Chattopadhyay, R.S.Gupta (in prep)

Capping the positivity cone

$$
{}^{1}\text{Im}\mathcal{M}^{UV}_{ijkl}(\mu, t) = 16\pi \sum_{l=0}^{\infty} (2l+1)P_l\left(1+\frac{2t}{\mu}\right)\rho^{ijkl}_l(\mu)
$$

Ref: Q.Chen et al.'23

Capping the positivity cone

Bounds for VVVV Processes (aQGCs)

- Experimental Bounds: Based on Eboli et al. (2024). Process: $pp \rightarrow VVi$ *ji* (VBS).
- Positivity Bounds: Exclude significant regions of the EFT parameter space.
- Capping Bounds: Found to be stronger than experimental limits for certain *cⁱ* values.
- Can obtain SMEFT bounds by projecting to SMEFT planes (dashed lines).

• Exp bounds on WCs for $VV \rightarrow VV$ and $VV \rightarrow hh$ processes provide indirect constraints on WCs for *VV* → *Vh* processes.

> *Vhhh* : $|c_{14}| < 0.0356$ *hhhh* : $0 < c_{15} < 0.0066$ for $\Lambda = 2.4$ TeV

- Poincare invariance + locality + causality + unitarity leads to positivity constraints and reduces allowed IR-parameter space significantly.
- we explore positivity constraints on space of WCs of HEFT operators contributing to longitudinal gauge-Higgs scattering process such as the following processes,

 $V_L V_L \rightarrow V_L V_L$, $V_L V_L \rightarrow hh$, $V_L V_L \rightarrow V_L h$, $hh \rightarrow hV_L$ and $hh \rightarrow hh$ $(V \in \{W^{\pm}, Z\})$.

- *HEFT* ⊃ *SMEFT*, thus our bounds are more general than SMEFT.
- We derive positivity constraints on 15-D space of WCs of HEFT operators that contributes to these process. \approx 20% of (5-dim) EFT parameter space for aQGCs within the Exp. bounds is

valid.

• Utilizing null constraints and unitarity, we cap the positivity cone, obtaining double-sided bounds on these 15 WCs.

In some cases, these bounds are tighter than the current experimental limits.