SMEFT meets quantum gravity

Astrid Eichhorn, Heidelberg University

8th General Meeting of the LHC EFT working group, December 3, 2024

New physics

New physics has to be...

... very heavy

SMEFT

Z' bosons Supersymmetry

... (light and) very weakly interacting with the SM

> Axion-like particles

New physics

Asymptotic safety: Lightning introduction

- quantum field theory of the metric \rightarrow quantize just like the other fundamental forces
- perturbative non-renormalizability: breakdown of predictivity
- asymptotic safety = quantum scale symmetry

Asymptotic safety: Lightning introduction

- quantum field theory of the metric \rightarrow quantize just like the other fundamental forces
- perturbative non-renormalizability: breakdown of predictivity
- asymptotic safety = quantum scale symmetry \rightarrow Renormalization Group fixed point

Asymptotic safety: Lightning introduction

- quantum field theory of the metric \rightarrow quantize just like the other fundamental forces \bullet
- perturbative non-renormalizability: breakdown of predictivity \bullet
- asymptotic safety = quantum scale symmetry \rightarrow Renormalization Group fixed point lacksquare

Asymptotically safe Standard Model

without gravity:

- not ultraviolet complete (Landau pole/triviality problem)
- measured values are free parameters

RG scale k in GeV

Asymptotically safe Standard Model

without gravity:

- not ultraviolet complete (Landau pole/triviality problem)
- measured values of couplings are free parameters

work by many groups: de Brito, Gies, Held, Knorr, Kowalska, Litim, Percacci, Pereira, Reichert, Reuter, Saueressig, Wetterich, Yamada

with gravity: indications that

- ultraviolet complete (no Landau poles)
- measured values of some (not all) couplings are predicted/bounded from above

reviews: AE '18; AE, Schiffer '22

Key messages:

Key messages:

Transplanckian scales:

- Not all SMEFT interactions nonzero to first approximation (e.g., no B-violating interactions)

• Asymptotically safe gravity unavoidably generates higher-order interactions that are part of the SMEFT

Key messages:

Transplanckian scales:

- Asymptotically safe gravity unavoidably generates higher-order interactions that are part of the SMEFT
 Net all CMEET interactions non-zero to first energy imptient (or a second particulation interactions)
- Not all SMEFT interactions nonzero to first approximation (e.g., no B-violating interactions)

Below-planckian scales:

- Positivity bounds provide nontrivial consistency-check for asymptotic safety

Key messages:

Transplanckian scales:

- Asymptotically safe gravity unavoidably generates higher-order interactions that are part of the SMEFT
- Not all SMEFT interactions nonzero to first approximation (e.g., no B-violating interactions)

Below-planckian scales:

- Positivity bounds provide nontrivial consistency-check for asymptotic safety
- size of Wilson coefficients:
 - scenario I: essentially zero at LHC scales
 - scenario II (speculative): non-zero due to intermediate fixed-point regime

Key messages:

Transplanckian scales:

- Not all SMEFT interactions nonzero to first approximation (e.g., no B-violating interactions)

Below-planckian scales:

- Positivity bounds provide nontrivial consistency-check for asymptotic safety
- size of Wilson coefficients:
 - scenario I: essentially zero at LHC scales
 - scenario II (speculative): non-zero due to intermediate fixed-point regime

Asymptotically safe gravity unavoidably generates higher-order interactions that are part of the SMEFT

No "smoking gun" for gravity, but consistency tests

• generation mechanism: [AE, Gies '11; AE '12; AE, Held '17; Christiansen, AE '17]

gravity cannot be decoupled.

generation mechanism: \bullet [AE, Gies '11; AE '12; AE, Held '17; Christiansen, AE '17]

gravity cannot be decoupled.

example: gravity generates photon-interactions

 $\eta_{\mu\nu}\eta^{\kappa\lambda}F_{\mu\nu}F_{\nu\lambda} \to \sqrt{g}g^{\mu\nu}g^{\kappa\lambda}F_{\mu\kappa}F_{\nu\lambda}$

generation mechanism: \bullet [AE, Gies '11; AE '12; AE, Held '17; Christiansen, AE '17]

gravity cannot be decoupled.

example: gravity generates photon-interactions

$$\eta_{\mu\nu}\eta^{\kappa\lambda}F_{\mu\nu}F_{\nu\lambda} \to \sqrt{g}g^{\mu\nu}g^{\kappa\lambda}F_{\mu\kappa}F_{\nu\lambda}$$

 $\rightarrow w_2 (F^2)^2$ with $w_2 \neq 0$

Current status: no studies in full SMEFT, instead simplified studies (e.g. without flavor-structure)

operator dimension	Gauge sector	Scalar sector	Fermion sector	Mixed
dimension 5			no proton decay in asymptotic safety AE, Ray '23	
dimension 6	not generated in asymptotic safety	not generated in asymptotic safety	$ \left(\frac{\bar{\psi} \gamma_{\mu} \psi}{\varphi} \right)^{2} $ AE, Gies '11; Meibohm, Pawlowski '16; de Brito, AE, Schiffer '20; de Brito, AE, Ray '23	not generate asymptotic sa
dimension 8	$ \begin{pmatrix} F_{\mu\nu}F^{\mu\nu} \end{pmatrix}^2, F_{\mu\nu}F^{\nu\kappa}F_{\kappa\lambda}F^{\mu\lambda} \\ \text{Christiansen, AE '17,} \\ \text{AE, Schiffer (+) '19, '21, '24} \\ \text{Knorr, Platania '24} \end{pmatrix} $	$ \begin{pmatrix} \partial_{\mu}\phi\partial^{\mu}\phi \end{pmatrix}^{2} \\ AE '12; \\ de Brito, AE, L. d. Santos '21, \\ Laporte, Pereira, Saueressig, Wang '21, \\ de Brito, Knorr, Schiffer '23 \end{pmatrix}^{2} $		$\left(ar{\psi}\gamma_{\mu} abla^{\mu}\psi ight)\left(\partial_{ u}q ight)$ AE, Held '17
dimension 10 or higher	$\left(F_{\mu\nu}F^{\mu\nu} ight)^{3}$ AE, Schiffer '24	$\left(\partial_{\mu}\phi\partial^{\mu}\phi ight)^{n}$ de Brito, Knorr, Schiffer '23		

Current status: no studies in full SMEFT, instead simplified studies (e.g. without flavor-structure)

operator dimension	Gauge sector	Scalar sector	Fermion sector	Mixed
dimension 5	-	Only those interactions which share the symmetries f the kinetic terms are induce	no proton decay in asymptotic safety AE, Ray '23	
dimension 6	not generated in asymptotic safety	not generated in asymptotic safety	$ \left(\bar{\psi} \gamma_{\mu} \psi \right)^{2} $ AE, Gies '11; Meibohm, Pawlowski '16; de Brito, AE, Schiffer '20; de Brito, AE, Ray '23	not generate asymptotic sa
dimension 8	$ \begin{pmatrix} F_{\mu\nu}F^{\mu\nu} \end{pmatrix}^2, F_{\mu\nu}F^{\nu\kappa}F_{\kappa\lambda}F^{\mu\lambda} \\ \text{Christiansen, AE '17,} \\ \text{AE, Schiffer (+) '19, '21, '24} \\ \text{Knorr, Platania '24} \end{pmatrix} $	$ \begin{pmatrix} \partial_{\mu} \phi \partial^{\mu} \phi \end{pmatrix}^{2} \\ AE '12; \\ de Brito, AE, L. d. Santos '21, \\ Laporte, Pereira, Saueressig, Wang '21, \\ de Brito, Knorr, Schiffer '23 \end{pmatrix}^{2} $		$\left(ar{\psi}\gamma_{\mu} abla^{\mu}\psi ight)\left(\partial_{ u}q ight)$ AE, Held '17
dimension 10 or higher	$ \left(F_{\mu\nu}F^{\mu\nu}\right)^{3} $ AE, Schiffer '24	$\left(\partial_{\mu}\phi\partial^{\mu}\phi\right)^{n}$ de Brito, Knorr, Schiffer '23		

SMEFT @ dim 6

X^3		φ^6 and $\varphi^4 D^2$			
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C}_{\nu}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	Q_{earphi}	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} C^{\mu\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi\square}$	$(arphi^\dagger arphi) \Box (arphi^\dagger arphi)$	$Q_{u\varphi}$	
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	Q_{darphi}	
$Q_{\widetilde{W}}$	$\mathcal{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				100
	$X^2 \varphi^2$		$\psi^2 X \varphi$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q^{(1)}_{arphi l}$	(
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(ar{l}_p \sigma^{\mu u} e_r) arphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	(4
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$\left(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{\rho} G^A_{\mu\nu}\right)$	$Q_{arphi e}$	
$\left\ ~~ Q_{arphi \widetilde{W}} ight.$	$arphi^{\dagger}arphi \widetilde{W}^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$\left(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}\right)$	$Q^{(1)}_{arphi q}$	(
$Q_{\varphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$\left(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}\right)$	$Q^{(3)}_{arphi q}$	$(\varphi$
$Q_{arphi \widetilde{B}}$	$arphi^{\dagger}arphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$\left(\bar{q}_p \sigma^{\mu} T^A d_r\right) \varphi G^A_{\mu\nu}$	$Q_{arphi u}$	(
$ Q_{\varphi WB}$	$ ho^{\dagger} au^{I} arphi W^{I}_{\mu u} B^{\mu u}$	Q_{dW}	$\left(\bar{q}_{\rho}\sigma^{\mu\nu}d_{r})\tau^{I}\varphiW^{I}_{\mu\nu}\right)$	$Q_{arphi d}$	
$\left\ \; Q_{arphi \widetilde{W}B} \; ight.$	$\varphi^{\dagger} au^{I} \varphi \widetilde{W}^{I}_{\mu u} B^{\mu u}$	Q_{dB}	$\int (\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{arphi u d}$	i

no-global-symmetries conjecture: no evidence in asymptotic safety

reviewed in: [AE, Schiffer '22 AE, Hebecker, Pawlowski, Walcher '24]

 \Rightarrow only interactions with the symmetries of kinetic terms are necessarily present

 \Rightarrow other terms to first approximation zero, unless quantum gravity changes scaling dimension from irrelevant to relevant; however: so far no evidence for this

SMEFT @ dim 6: 4-fermion couplings

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$				
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p$	
$\left\ egin{array}{c} Q_{qq}^{(1)} \end{array} ight.$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r) (ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p$	
$Q_{qq}^{(3)}$	$(ar{q}_p\gamma_\mu au^I q_r)(ar{q}_s\gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p$	
$\left\ egin{array}{c} Q_{lq}^{(1)} \end{array} ight.$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p$	
$\left\ \begin{array}{c} Q_{lq}^{(3)} \end{array} ight.$	$(ar{l}_p\gamma_\mu au^I l_r)(ar{q}_s\gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p$	
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left(ar{q}_p \gamma_\mu T ight)$	
		$Q_{ud}^{(8)}$	$\left(ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t) ight)$	$Q_{qd}^{(1)}$	$(ar{q}_p$	
				$Q_{qd}^{(8)}$	$(ar{q}_p\gamma_\mu)$	
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating				
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$\left {{arepsilon arepsilon } arepsilon a$	$^{T}Cu_{r}^{\beta}]$	$\left[(q_s^{\gamma j})^T ight.$	
$\left\ \; Q_{quqd}^{(1)} ight.$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$\left \varepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j}) \right] ight.$	$)^T C q_r^{\beta k}$	$\left[\left(u^{\gamma} ight) ^{\gamma} ight]$	
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q^{lpha})^{lpha} ight]$	$^{j})^{T}Cq_{r}^{eta}$	$^{8k}] \left[(q_s^{\gamma r}$	
$\left\ ~ Q_{lequ}^{(1)} ight.$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$\sum_{\gamma} \left[(d_p^lpha)^T ight]$	$\left[Cu_{r}^{\beta} ight] \left[ight]$	$\left[(u_s^\gamma)^T C ight]$	
$Q_{lequ}^{(3)}$	$\left(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)\right)$					

```
L)(\bar{R}R)
(\sigma_{\mu} \gamma_{\mu} l_r) (\bar{e}_s \gamma^{\mu} e_t)
(\gamma_{\mu}l_{r})(ar{u}_{s}\gamma^{\mu}u_{t})
(\bar{d}_s\gamma^\mu d_t)(\bar{d}_s\gamma^\mu d_t)
(\bar{e}_s\gamma^\mu e_t)(\bar{e}_s\gamma^\mu e_t)
(\bar{u}_s\gamma^\mu q_r)(ar{u}_s\gamma^\mu u_t)
(T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)
(\bar{d}_s\gamma^\mu q_r)(ar{d}_s\gamma^\mu d_t)
T^A q_r) (ar{d}_s \gamma^\mu T^A d_t)
\left[Cl_{t}^{k}\right]
 Ce_t
^{n})^{T}Cl_{t}^{n}
[e_t]
```

no-global-symmetries conjecture: no evidence in asymptotic safety

reviewed in: [AE, Schiffer '22 AE, Hebecker, Pawlowski, Walcher '24]

 \Rightarrow only interactions with the symmetries of kinetic terms are necessarily present

 \Rightarrow other terms to first approximation zero, unless quantum gravity changes scaling dimension from irrelevant to relevant; however: so far no evidence for this

no proton decay in asymptotic safety AE, Ray '23

Implications for Wilson coefficients at LHC energies

Functional Renormalization Group: k^2 sets infrared cutoff in Euclidean path integral

infrared: LHC

decoupling of gravity fluctuations

Planck-scale

UV: fixed-point regime

 k^2/GeV^2

Implications for Wilson coefficients at LHC energies

Functional Renormalization Group: k^2 sets infrared cutoff in Euclidean path integral

infrared: LHC

decoupling of gravity fluctuations

$$\Gamma_{k} = \int d^{4}x \sum_{i} \bar{g}_{i}(k) \mathcal{O}_{i}^{(6)} + \dots \xrightarrow{k^{2} \to 0} \Gamma = \int d^{4}x \mathscr{L}_{\text{EFT}} \mathscr{L}_{\text{EFT}} = \mathscr{L}_{\text{SM}} + \sum_{i} \frac{c_{i}}{\Lambda_{\text{NP}}^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{c_{j}}{\Lambda_{\text{NP}}^{4}} \mathcal{O}_{i}^{(8)} + \dots$$

Planck-scale

UV: fixed-point regime

 k^2/GeV^2

Implications for Wilson coefficients at LHC energies

Functional Renormalization Group: k^2 sets infrared cutoff in Euclidean path integral

 k^2/GeV^2

SMEFT interactions in asymptotic safety: positivity bounds

$$\mathscr{L}_{k} = \frac{1}{4}F^{2} + \frac{w_{2}}{k^{4}}\left(F^{2}\right)^{2} + \frac{h_{2}}{k^{4}}F^{4}$$

Positivity bounds from causality in the IR

$$\frac{w_2}{h_2} > -\frac{3}{4}, \quad \frac{4w_2 + 3h_2}{|4w_2 + h_2|} > 1$$

[Carillo Gonzalez, de Rham, Jaitly, Pozsgay, Tokareva '23]

Apply to photons in asymptotically safe gravity:

- assume that can Wick-rotate action
- start at interacting fixed point and integrate to low k: use that $w_2(k)$, $h_2(k)$ are irrelevant and thus calculable
- gravity fluctuations decouple dynamically at Planck scale

5

SMEFT interactions in asymptotic safety: positivity bounds

$$\mathscr{L}_{k} = \frac{1}{4}F^{2} + \frac{w_{2}}{k^{4}}\left(F^{2}\right)^{2} + \frac{h_{2}}{k^{4}}F^{4}$$

Positivity bounds from causality in the IR

$$\frac{w_2}{h_2} > -\frac{3}{4}, \quad \frac{4w_2 + 3h_2}{|4w_2 + h_2|} > 1$$

[Carillo Gonzalez, de Rham, Jaitly, Pozsgay, Tokareva '23]

Apply to photons in asymptotically safe gravity:

- assume that can Wick-rotate action
- start at interacting fixed point and integrate to low k: use that $w_2(k)$, $h_2(k)$ are irrelevant and thus calculable
- gravity fluctuations decouple dynamically at Planck scale

asymptotic safety avoids propagation outside the lightcone

[AE, Pedersen, Schiffer '24;

see also Knorr, Platania '24]

SMEFT interactions in asymptotic safety: positivity bounds

$$\mathscr{L}_{k} = \frac{1}{4}F^{2} + \frac{w_{2}}{k^{4}}\left(F^{2}\right)^{2} + \frac{h_{2}}{k^{4}}F^{4}$$

Positivity bounds from causality in the IR

$$\frac{w_2}{h_2} > -\frac{3}{4}, \quad \frac{4w_2 + 3h_2}{|4w_2 + h_2|} > 1$$

[Carillo Gonzalez, de Rham, Jaitly, Pozsgay, Tokareva '23]

Apply to photons in asymptotically safe gravity:

- assume that can Wick-rotate action
- start at interacting fixed point and integrate to low k: use that $w_2(k)$, $h_2(k)$ are irrelevant and thus calculable
- gravity fluctuations decouple dynamically at Planck scale

 Λ

Four-fermion interactions

Toy model with two fermion species (no color, flavor, charge): $\overline{\lambda_{i}}$

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r) (ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar q_p \gamma_\mu q_r) (ar e_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(ar{l}_p\gamma_\mu au^I l_r)(ar{q}_s\gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{u}_s\gamma^\mu u_t)$
		$ig Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left \ (ar{q}_p \gamma_\mu T^A q_r) (ar{u}_s \gamma^\mu T^A u_t) \ ight $
		$Q_{ud}^{(8)}$	$\left(ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t) ight.$	$ig Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(ar{q}_p \gamma_\mu T^A q_r) (ar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating			
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_{p}^{\alpha})^{T}Cu_{r}^{\beta}\right]\left[(q_{s}^{\gamma j})^{T}Cl_{t}^{k}\right]$		
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$\left[arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j})^T C q_r^{eta k} ight] \left[(u^\gamma)^T C e_t ight] ight]$		
$Q_{quqd}^{(8)}$	$(ar{q}_p^j T^A u_r) arepsilon_{jk} (ar{q}_s^k T^A d_t)$	Q_{qqq}	$arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q^{lpha j}_{r})^T\mathcal{C}q^{eta k}_r ight]\left[(q^{\gamma m}_s)^TCl^n_t ight]$		
$\left \begin{array}{c} Q_{lequ}^{(1)} \end{array} ight $	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$\left[(d_p^lpha)^T C u_r^eta ight] \left[(u_s^\gamma)^T C e_t ight]$		
$Q_{lequ}^{(3)}$	$(ar{l}_p^j\sigma_{\mu u}e_r)arepsilon_{jk}(ar{q}_s^k\sigma^{\mu u}u_t)$				

$$\overline{l}_{\pm} = \frac{\lambda_{\pm}}{k^2} \to \frac{c_{4-f}}{\Lambda_{\rm NP}^2}$$

Renormalization Group flow with gravity

[AE, Gies '11; Meibohm, Pawlowski '16; de Brito, AE, Schiffer '20; de Brito, AE, Ray '23]

Four-fermion interactions

Toy model with two fermion species (no color, flavor, charge): $ar{\lambda}$

Potential implications for SMEFT (assuming a "desert")

[Brenner, Chikkaballi, AE, Ray '24]

• Scenario I: $\lambda_{\pm} \sim k^2$ for $k^2 < M_{\text{Planck}}^2$; thus $\Lambda_{\text{NP}} \sim M_{\text{Planck}}$

$$\overline{l}_{\pm} = \frac{\lambda_{\pm}}{k^2} \to \frac{c_{4-f}}{\Lambda_{\rm NP}^2}$$

Renormalization Group flow with gravity

[AE, Gies '11; Meibohm, Pawlowski '16; de Brito, AE, Schiffer '20; de Brito, AE, Ray '23]

Four-fermion interactions

Toy model with two fermion species (no color, flavor, charge): $\overline{\lambda}_{i}$

Potential implications for SMEFT (assuming a "desert")

[Brenner, Chikkaballi, AE, Ray '24]

• Scenario I: $\lambda_{\pm} \sim k^2$ for $k^2 < M_{\text{Planck}}^2$; thus $\Lambda_{\text{NP}} \sim M_{\text{Planck}}$

thus $\Lambda_{\rm NP} = \Lambda_{\rm eff NP} \ll M_{\rm Planck}$

$$\lambda_{\pm} = \frac{\lambda_{\pm}}{k^2} \to \frac{c_{4-f}}{\Lambda_{\rm NP}^2}$$

Renormalization Group flow with gravity

[AE, Gies '11; Meibohm, Pawlowski '16; de Brito, AE, Schiffer '20; de Brito, AE, Ray '23]

Key messages:

Transplanckian scales:

- Asymptotically safe gravity unavoidably generates higher-order interactions that are part of the SMEFT
- Not all SMEFT interactions nonzero to first approximation (e.g., no B-violating interactions)

Below-planckian scales:

- Positivity bounds provide nontrivial consistency-check for asymptotic safety
- size of Wilson coefficients:
 - scenario I: essentially zero at LHC scales
 - scenario II (speculative): non-zero due to intermediate fixed-point regime

Outlook

- from toy models towards the SMEFT (add flavor structure)
- remove "desert" hypothesis: ullet

constraints on Wilson coefficients from quantum gravity in presence of intermediate new physics

Outlook

- from toy models towards the SMEFT (add flavor structure)
- remove "desert" hypothesis: lacksquare

constraints on Wilson coefficients from quantum gravity in presence of intermediate new physics