Long-distance contributions in rare $b \rightarrow s\ell\ell$ decays

Arianna Tinari (University of Zürich) Based on G. Isidori, Z. Polonsky, AT (2405.17551)

General Meeting of the LHC EFT Working Group CERN, 2nd-4th December 2024

- $b \rightarrow s\ell\ell$ decays are very good candidates in the search for BSM.
- Being suppressed in the SM, they are extremely sensitive to a wide range of NP effects.

- Key decay channels are $B \to K\bar{\ell}\ell, B \to K^*\bar{\ell}\ell, B_s \to \phi\bar{\ell}\ell, B_s \to \bar{\mu}\mu$.
- ► Observables: branching ratios, (optimized) angular observables (P^(')_{1,2,3,4,5,6,8}), LFU ratios.
- While LFU ratios are theoretically clean, branching fractions and angular observables are less clean, being severely affected by hadronic uncertainties.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Rare $b \rightarrow s\ell\ell$ decays

• Effective description of
$$b \rightarrow s\bar{\ell}\ell$$

decays below the EW scale:

$$\mathscr{L} = \mathscr{L}_{\text{QCD+QED}}^{[N_f=5]} + \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i \mathcal{O}_i$$

• General features of $b \rightarrow s\bar{\ell}\ell$ branching ratios:

• q^2 is the invariant mass of the lepton pair.

• Separate tests in the low- or high- q^2 region.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Effective Lagrangian

$$\mathcal{O}_{1} = \frac{4\pi}{\alpha_{e}} (\bar{s}_{L} \gamma_{\mu} T^{a} c_{L}) (\bar{c}_{L} \gamma^{\mu} T^{a} b_{L}) \qquad \mathcal{O}_{2} = \frac{4\pi}{\alpha_{e}} (\bar{s}_{L} \gamma_{\mu} c_{L}) (\bar{c}_{L} \gamma^{\mu} \sigma^{\mu} \sigma$$

J/4(1S)

$$\mathcal{O}_{2} = \frac{4\pi}{\alpha_{e}} (\bar{s}_{L} \gamma_{\mu} c_{L}) (\bar{c}_{L} \gamma^{\mu} b_{L})$$

$$\mathcal{O}_{4} = \frac{4\pi}{\alpha_{e}} (\bar{s}_{L}^{a} \gamma^{\mu} T^{a} b_{L}^{b}) \sum_{q} (\bar{q}_{L}^{b} \gamma^{\mu} T^{a} q_{L}^{a})$$

$$\mathcal{O}_{6} = \frac{4\pi}{\alpha_{e}} (\bar{s}_{L}^{a} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} T^{a} b_{L}^{b}) \sum_{q} (\bar{q}_{L}^{b} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho}$$

$$\mathcal{O}_{8} = \frac{g_{s}}{e^{2}} m_{b} (\bar{s}_{L} \sigma^{\mu\nu} T^{a} b_{R}) G_{\mu\nu}^{a}$$

$$\mathcal{O}_{10} = (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{\ell} \gamma^{\mu} \gamma_{5} \ell)$$

} |GeV²]

broader resonances

Tension in branching ratios

Long-standing tension in branching ratios:

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Tension in the inclusive rate

- Tension seen also at the **inclusive level** at high q^2 :
 - Compare a semi-inclusive determination based on data from LHCb with the inclusive SM prediction based on:

The inclusive rate has a different sensitivity to nonperturbative effects associated with charm-rescattering and is insensitive to local form factor uncertainties.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

- [Z. Ligeti and F. J. Tackmann, 0707.1694]
- $_L + \Delta \mathcal{R}_{[q_0^2]}
 ight]$
- <u>855</u>

[G.Isidori, Z. Polonsky, AT, 2305.03076]

Tension in angular observables

Long-standing tension in angular observables:

[Plot by M. Andersson]

• Recent angular analysis by LHCb on $B \to K^* \bar{\mu} \mu$

Arianna Tinari (University of Zürich) | CERN, 3.12.24

[JHEP 09 (2024) 026]

see talk by Zahra Gh.Moghaddam

* Matrix element for exclusive modes:

Arianna Tinari (University of Zürich) | CERN, 3.12.24

$$H_{\lambda}\ell\ell)|_{C_{1-6}} = -i\frac{32\pi^2\mathcal{N}}{q^2}\bar{\ell}\gamma^{\mu}\ell\int d^4x e^{iqx}\langle H_{\lambda}|T\{j_{\mu}^{\text{em}}(x),\sum_{i=1,6}C_i\mathcal{O}_i(0)\}|B$$

Exclusive modes

- * The non-local form factors contain the matrix elements of the four-quark operators \mathcal{O}_{1-6} .
- * Note that to all orders in α_{s} , and to first order in α_{em} , these matrix elements have the same structure as the matrix elements of \mathcal{O}_7 and \mathcal{O}_9 :

$$\mathcal{M}(B \to H_{\lambda} \mathcal{C} \ell) |_{C_{1-6}} = -i \frac{32\pi^2 \mathcal{N}}{q^2} \bar{\ell} \gamma^{\mu} \mathcal{C} \int d^4 x e^{iqx} \langle H_{\lambda} | T\{j_{\mu}^{\text{em}}(x), \sum_{i=1,6} C_i \mathcal{O}_i(0)\} | B \rangle = \left(\Delta_9^{\lambda}(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^+ \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^- | \mathcal{O}_9(q^2) + \frac{m_B^2}{q^2} \Delta_7^{\lambda} \right) \langle H_{\lambda} \mathcal{C}^- | \mathcal{O$$

* The (regular for $q^2 \rightarrow 0$) contributions of the non-local matrix elements of the four-quark operators can be effectively taken into account by a shift in C_0 :

$$C_9 \to C_9^{\lambda}(q^2) = C_9^{\mathrm{SN}}$$

* There is no doubt that the tension with the data could be well described by a shift in C_9 of O(25%)with respect to the SM value BUT this shift could come from an inaccurate description of the non-local matrix elements.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

 $^{M} + \Delta_{9}^{\lambda}(q^{2}) + C_{9}^{SD}$ LD + NP ?

Non-local contributions

Second type: rescattering of a pair of charmed and charmed-strange mesons.

- Applying dispersive methods is tricky because the analytic structure is quite involved; in q^2 integration domain, requiring a non trivial deformation of the path.
- show a reduced q^2 or λ dependence.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Pictures from [Ciuchini, Fedele, Franco, Paul, Silvestrini, Valli, 2212.10516]

See Mutke, Hoferichter, Kubis JHEP 07 (2024) 276

particular, an additional singularity in the case of an anomalous threshold could move into the

• The effect of these contributions is indistinguishable from a short-distance effect, since they

Charm rescattering

- These amplitudes are associated with physical thresholds which are not reproduced in any of the non-local theory estimates.
- We look at the simplest decay mode, $B^0 \to K^0 \overline{\ell} \ell$, and the largest contributing two-body intermediate state ($D_s D^*$ and $D_s^* D$).
- We obtain an accurate description in the low recoil (or high q^2) limit; we extrapolate to the whole kinematical region introducing appropriate form factors.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

from data

from HHChPT + QED

Charm rescattering

- These amplitudes are associated with physical thresholds which are not reproduced in any of the non-local theory estimates.
- We look at the simplest decay mode, $B^0 \to K^0 \overline{\ell} \ell$, and the largest contributing two-body intermediate state ($D_s D^*$ and $D_s^* D$).
- We obtain an accurate description in the low recoil (or high q^2) limit; we extrapolate to the whole kinematical region introducing appropriate form factors.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

* Simplest effective interactions able to reproduce these discontinuities.

* The model is not meant to analyze rescattering amplitudes associated with different discontinuities, i.e. different intermediate states.

* Dynamics of $D_{(s)}^{(*)}$ mesons close to their mass shell, determined by:

- * Lorentz + Gauge invariance under QED
- * SU(3) light-flavor symmetry
- * Heavy-quark spin symmetry

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Model

$$\begin{split} \mathcal{L}_{D,\text{free}} &= -\frac{1}{2} \left(\Phi_{D^*}^{\mu\nu} \right)^{\dagger} \Phi_{D^* \, \mu\nu} - \frac{1}{2} \left(\Phi_{D_s^*}^{\mu\nu} \right)^{\dagger} \Phi_{D_s^* \, \mu\nu} \\ &+ \left(D_{\mu} \Phi_D \right)^{\dagger} D^{\mu} \Phi_D + \left(D_{\mu} \Phi_{D_s} \right)^{\dagger} D^{\mu} \Phi_{D_s} \\ &+ m_D^2 \left[\left(\Phi_{D^*}^{\mu} \right)^{\dagger} \Phi_{D^* \, \mu} + \left(\Phi_{D_s^*}^{\mu} \right)^{\dagger} \Phi_{D_s^* \, \mu} \right] \\ &- m_D^2 \left[\Phi_D^{\dagger} \Phi_D + \Phi_{D_s}^{\dagger} \Phi_{D_s} \right] + \text{h.c.} \,. \end{split}$$

* Dynamics of $D_{(s)}^{(*)}$ mesons close to their mass shell, determined by:

- * Lorentz + Gauge invariance under QED
- * SU(3) light-flavor symmetry
- * Heavy-quark spin symmetry

* Weak $B \rightarrow DD^*$ transition described by (using heavy-quark spin symmetry + data)

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Model

$$\begin{split} \mathcal{L}_{D,\text{free}} &= -\frac{1}{2} \left(\Phi_{D^*}^{\mu\nu} \right)^{\dagger} \Phi_{D^* \, \mu\nu} - \frac{1}{2} \left(\Phi_{D_s^*}^{\mu\nu} \right)^{\dagger} \Phi_{D_s^* \, \mu\nu} \\ &+ \left(D_{\mu} \Phi_D \right)^{\dagger} D^{\mu} \Phi_D + \left(D_{\mu} \Phi_{D_s} \right)^{\dagger} D^{\mu} \Phi_{D_s} \\ &+ m_D^2 \left[\left(\Phi_{D^*}^{\mu} \right)^{\dagger} \Phi_{D^* \, \mu} + \left(\Phi_{D_s^*}^{\mu} \right)^{\dagger} \Phi_{D_s^* \, \mu} \right] \\ &- m_D^2 \left[\Phi_D^{\dagger} \Phi_D + \Phi_{D_s}^{\dagger} \Phi_{D_s} \right] + \text{h.c.} \,. \end{split}$$

$$\mathcal{L}_{BD} = g_{DD^*} \left(\Phi_{D_s^*}^{\mu \dagger} \Phi_D \partial_\mu \Phi_B + \Phi_{D_s}^{\dagger} \Phi_{D^*}^{\mu} \partial_\mu \Phi_B \right) + \text{h.c.}$$

In principle g_{DD^*} could have a phase -> we maximize over it

- * Dynamics of $D_{(s)}^{(*)}$ mesons close to their mass shell, determined by:
 - * Lorentz + Gauge invariance under QED
 - * SU(3) light-flavor symmetry
 - * Heavy-quark spin symmetry

- * Weak $B \rightarrow DD^*$ transition described by (using heavy-quark spin symmetry + data)
- * From HHChPT (valid close to endpoint $q^2 \approx m_B^2$):

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Model

$$\begin{split} \mathcal{L}_{D,\text{free}} &= -\frac{1}{2} \left(\Phi_{D^*}^{\mu\nu} \right)^{\dagger} \Phi_{D^* \, \mu\nu} - \frac{1}{2} \left(\Phi_{D_s^*}^{\mu\nu} \right)^{\dagger} \Phi_{D_s^* \, \mu\nu} \\ &+ \left(D_{\mu} \Phi_D \right)^{\dagger} D^{\mu} \Phi_D + \left(D_{\mu} \Phi_{D_s} \right)^{\dagger} D^{\mu} \Phi_{D_s} \\ &+ m_D^2 \left[\left(\Phi_{D^*}^{\mu} \right)^{\dagger} \Phi_{D^* \, \mu} + \left(\Phi_{D_s^*}^{\mu} \right)^{\dagger} \Phi_{D_s^* \, \mu} \right] \\ &- m_D^2 \left[\Phi_D^{\dagger} \Phi_D + \Phi_{D_s}^{\dagger} \Phi_{D_s} \right] + \text{h.c.} \,. \end{split}$$

$$\mathcal{L}_{BD} = g_{DD^*} \left(\Phi_{D_s^*}^{\mu\dagger} \Phi_D \partial_\mu \Phi_B + \Phi_{D_s}^{\dagger} \Phi_{D^*}^{\mu} \partial_\mu \Phi_B \right) + \text{h.c.}$$

In principle g_{DD^*} could have a phase -> we maximize over

$$\mathcal{L}_{DK} = \frac{2ig_{\pi}m_D}{f_K} \left(\Phi_{D^*}^{\mu\dagger} \Phi_{D_s} \partial_{\mu} \Phi_K^{\dagger} - \Phi_D^{\dagger} \Phi_{D_s^*}^{\mu} \partial_{\mu} \Phi_K^{\dagger} \right) + \text{h.c.}$$

- * Dynamics of $D_{(s)}^{(*)}$ mesons close to their mass shell, determined by:
 - * Lorentz + Gauge invariance under QED
 - * SU(3) light-flavor symmetry
 - * Heavy-quark spin symmetry

- * Weak $B \rightarrow DD^*$ transition described by (using heavy-quark spin symmetry + data)
- * From HHChPT (valid close to endpoint $q^2 \approx m_R^2$):

In the SU(3)-symmetric limit, the diagrams obtained by swapping $D_s^{(*)} \leftrightarrow D^{(*)}$ are symmetric.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Model

$$\begin{split} \mathcal{L}_{D,\text{free}} &= -\frac{1}{2} \left(\Phi_{D^*}^{\mu\nu} \right)^{\dagger} \Phi_{D^* \, \mu\nu} - \frac{1}{2} \left(\Phi_{D_s^*}^{\mu\nu} \right)^{\dagger} \Phi_{D_s^* \, \mu\nu} \\ &+ \left(D_{\mu} \Phi_D \right)^{\dagger} D^{\mu} \Phi_D + \left(D_{\mu} \Phi_{D_s} \right)^{\dagger} D^{\mu} \Phi_{D_s} \\ &+ m_D^2 \left[\left(\Phi_{D^*}^{\mu} \right)^{\dagger} \Phi_{D^* \, \mu} + \left(\Phi_{D_s^*}^{\mu} \right)^{\dagger} \Phi_{D_s^* \, \mu} \right] \\ &- m_D^2 \left[\Phi_D^{\dagger} \Phi_D + \Phi_{D_s}^{\dagger} \Phi_{D_s} \right] + \text{h.c.} \,. \end{split}$$

$$\mathcal{L}_{BD} = g_{DD^*} \left(\Phi_{D_s^*}^{\mu\dagger} \Phi_D \partial_\mu \Phi_B + \Phi_{D_s}^{\dagger} \Phi_{D^*}^{\mu} \partial_\mu \Phi_B \right) + \text{h.c.}$$

In principle g_{DD*} could have a phase -> we maximize over it

$$\mathcal{L}_{DK} = \frac{2ig_{\pi}m_D}{f_K} \left(\Phi_{D^*}^{\mu\dagger}\Phi_{D_s}\partial_{\mu}\Phi_K^{\dagger} - \Phi_D^{\dagger}\Phi_{D_s^*}^{\mu}\partial_{\mu}\Phi_K^{\dagger}\right) + \text{h.c.}$$

Arianna Tinari (University of Zürich) | CERN, 3.12.24

* To obtain a reliable estimate over the entire kinematical range, we introduce the form factors:

$$eF_V(q^2)$$
, $F_V(q^2) = \begin{cases} 1, & q^2 = 0, \\ \sim q^{-2}, & q^2 \gg m_D^2 \end{cases}$

$$\frac{1}{f_K} \to \frac{1}{f_K} G_K(q^2) ,$$

$$G_K(q^2) = \frac{1}{1 + E_K(q^2)/f_K} = \frac{2m_B f_K}{2m_B f_K + m_B^2 - q^2}$$

- discard it and use the scale dependence to estimate the uncertainty.

$$\mathcal{M}_{\mathrm{LD}} = -\frac{eg_{DD} \cdot g_{\pi} F_{V}(q^{2}) G_{K}(q^{2})}{8\pi^{2} f_{K} m_{D}} (p_{B} \cdot j_{\mathrm{em}}) \\ \times \left[(2 + L_{\mu}) - \delta L(q^{2}, m_{B}^{2}, m_{D}^{2}) \right], \\ \times \left[(2 + L_{\mu}) - \delta L(q^{2}, m_{B}^{2}, m_{D}^{2}) \right], \\ \sum d_{L}(x, y) = \log \left(\frac{2y - x + \sqrt{x(x - 4y)}}{2y} \right) \\ \times \left[\sqrt{x(x - 4y)} + y \log \left(\frac{2y - x + \sqrt{x(x - 4y)}}{2y} \right) \right] \\ \times \left[\sqrt{x(x - 4y)} + y \log \left(\frac{2y - x + \sqrt{x(x - 4y)}}{2y} \right) \right] \\ \sum d_{L}(x, y) = \frac{4G_{F}}{\sqrt{2}} \frac{e}{16\pi^{2}} V_{tb}^{*} V_{ts}(p_{B} \cdot j_{\mathrm{em}}) f_{+}(q^{2})(2C_{9}) \\ \end{bmatrix}$$

Compare it to

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Results

► Sum of diagrams shows an ultraviolet divergence; we use an MS-like renormalization scheme to

• **Result** for these long-distance contributions in the SU(3) – and heavy-quark spin symmetric limit:

- LD contributions do not exceed a few percent relative to the SD one.
- The absorptive part is independent of the renormalization scheme used, and corresponds to the analytic discontinuity of the amplitude corresponding to the kinematical regions where the internal mesons go on-shell.
- It can be considered model-independent at least at high q^2 .
- We have separately checked the discontinuities, finding agreement with the loop calculation.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Results

Effective shift in C_0

• We can encode the effect of the \mathcal{M}_{LD} via a q^2 -dependent shift in C_9 :

$$\delta C_{9,DD^*}^{\text{LD}}(q^2,\mu) = \bar{g}\,\Delta(q^2) \Big[2 + L_\mu - \delta L(q^2,m_B^2,m_D^2) \Big] \qquad \Delta(q^2) = -\frac{g_\pi m_B F_V(q^2) G_K(q^2)}{2f_K f_+(q^2)}$$

- Averaging over the low- and high- q^2 regions, we find: $\delta \bar{C}_{9,DD^*}^{\text{LD,low}}(\mu) = -0.003 - 0.003$ $\delta \bar{C}_{9,DD*}^{\text{LD,high}}(\mu) = 0.009 + 0.05$
- Varying the renormalization scale μ in the range [1,4] GeV:

$$|\delta \bar{C}_{9,DD^*}^{\mathrm{LD}}| \le 0.11$$

Arianna Tinari (University of Zürich) | CERN, 3.12.24

$$059 i - 0.156 \log \left(\frac{\mu}{m_D}\right)$$
$$53 i + 0.063 \log \left(\frac{\mu}{m_D}\right).$$

$$\frac{\delta C_9}{C_9^{SM}} \approx 2.5 \%$$

Accounting for additional intermediate states

- So far we focused on the D^*D_s or D^*_sD intermediate states, but in principle there are other states with $\overline{c}c\overline{s}d$ valence structure.
- Consider all intermediate states the allow parity-conserving strong interactions with the kaon.
- Conservative multiplicity factor accounting for all possible intermediate states:

$$\mathcal{N} = \frac{\sum_{X} \mathcal{M}(B^0 \to X)}{\mathcal{M}(B^0 \to D^* D_s) + \mathcal{M}(B^0 \to DD_s^*)} \approx \frac{1}{2} \sum_{X} \sqrt{\frac{\mathcal{B}(B^0 \to X)}{\mathcal{B}(B^0 \to DD_s^*)}} \approx 3$$

$$|\delta C_9^{\text{LD}}| \le \mathcal{N} |\delta \bar{C}_{9,DD^*}^{\text{LD}}| \le 0.33$$
 —

Arianna Tinari (University of Zürich) | CERN, 3.12.24

$$\frac{\delta C_9}{C_9^{SM}} \approx 8 - 10\%$$

B^0 Decay	$\mathcal{B}(B^0 \to X) \times 10^3$
D^*D_s	8.0 ± 1.1
DD_s^*	7.4 ± 1.6
$D^*D^*_s$	17.7 ± 1.4
$DD_{s0}(2317)$	1.06 ± 1.6
$D^*D_{s1}(2457)$	9.3 ± 2.2
$D^*D_{s1}(2536)$	0.50 ± 0.14
$DD_{s2}(2573)$	$(3.4 \pm 1.8) \times 10^{-2}$
$D^*D_{s2}(2573)$	< 0.2
$DD_{s1}(2700)$	0.71 ± 0.12

of C_9 at low- and high- q^2 provides a useful data-driven check for such long-distance contributions.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

• The sign of δC_9 is opposite in the two cases (regardless of the phase of g_{DD^*}): comparing the extraction

- of C_9 at low- and high- q^2 provides a useful data-driven check for such long-distance contributions.
- We perform a fit of C_9 from the branching ratio and angular observables in $B \to K^* \bar{\mu} \mu$, assuming:

$$C_9 \to C_9^{\lambda}(q^2) + Y_{q\bar{q}}^{[0]}(q^2) + Y_{b\bar{b}}^{[0]}(q^2) + Y_{c\bar{c}}^{\lambda}(q^2)$$

encodes (factorizable) perturbative contributions from 4-quark operators

encodes the perturbative charmloop contributions and $c\bar{c}$ resonances

• We extract the residual contribution to C_9 from data:

[M. Bordone, G.Isidori, S. Mächler, AT, 2401.18007]

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Sign of δC_{Q}

• The sign of δC_9 is opposite in the two cases (regardless of the phase of g_{DD*}): comparing the extraction

 $Y_{c\bar{c}}^{\lambda}(q^2) = Y_{c\bar{c}}^{\lambda}(q_0^2) + \frac{16\pi^2}{\mathcal{F}_{\lambda}(q^2)} \Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^2), \ q_0^2 = 0$ $\Delta \mathscr{H}_{c\bar{c}}^{\lambda,1P} = \sum_{V} \eta_V^{\lambda} e^{i\delta_V^{\lambda}} \frac{q^2}{m_V^2} A_V^{\text{res}}(q^2) \qquad A_V^{\text{res}}(q^2) = \frac{m_V \Gamma_V}{m_V^2 - q^2 - im_V \Gamma_V}$

$$C_{9}^{\lambda}(q^{2}) = C_{9}^{\text{SM}} + C_{9}^{\text{LD},\lambda}(q^{2}) + C_{9}^{\text{SD}}$$

Short-distance, independent of λ and q^2

Long-distance, no reason to assume it is independent of λ or q^2

Using resonance parameters found by LHCb recently (2405.17347)

Arianna Tinari (University of Zürich) | CERN, 3.12.24

	constant C_9	C_9^\parallel	C_9^\perp	C_9^0
Low q^2	$2.60\substack{+0.18 \\ -0.17}$	$2.4^{+0.6}_{-0.6}$	$2.6\substack{+0.7 \\ -0.6}$	$2.8^{+0.7}_{-0.8}$
High q^2	$3.93\substack{+0.23 \\ -0.26}$	$4.0\substack{+0.5 \\ -0.5}$	$4.0^{+0.4}_{-0.4}$	$2.9\substack{+0.6 \\ -0.6}$

 $C_9 = 3.40^{+0.16}_{-0.16}$ ($\chi^2/dof = 1.5$)

The shift in C_9 we find from charm rescattering + NP shift of ~-1 gives a better global fit than a shift of ~-1

Importance of extracting the value of C_9 at different values of q^2

Conclusions

- * Non-local contributions in $b \to s\bar{\ell}\ell$ could significantly impact the extraction of C_9 .
- * We have presented an estimate of $B^0 \to K^0 \bar{\ell} \ell$ long-distance contributions induced by the rescattering of a charmed and a charmed-strange meson;
- * At high q^2 the estimate is based on controlled approximations from VMD and HHChPT; at low q^2 the extrapolation via form factors is only meant to provide a conservative upper bound;
- For the particular intermediate state we considered, charm rescattering contributions don't seem to be very large. We neglected some effects, but we conservatively accounted for additional intermediate states.

Conclusions

- * Non-local contributions in $b \to s\bar{\ell}\ell$ could significantly impact the extraction of C_9 .
- * We have presented an estimate of $B^0 \to K^0 \bar{\ell} \ell$ long-distance contributions induced by the rescattering of a charmed and a charmed-strange meson;
- * At high q^2 the estimate is based on controlled approximations from VMD and HHChPT; at low q^2 the extrapolation via form factors is only meant to provide a conservative upper bound;
- For the particular intermediate state we considered, charm rescattering contributions don't seem to be very large. We neglected some effects, but we conservatively accounted for additional intermediate states.
- ***** Going forward:
 - * At the experimental level, the extraction of C_9 at different values of q^2 is key.
 - * At the theoretical level, extension of this method: inclusion of the dipole coupling for the $DD^*\gamma$ vertex, more complicated intermediate states, different modes ($B \rightarrow K^*$)... Thank you for your attention!

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Backup Slides

KDD*

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Rules

 $DD\gamma$ and $DD\gamma K$

Diagrams

Neutral case

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Charged case

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Fit

		$q^2~({ m GeV^2})$	C_9^K (LHCb)	$ C_9^K (CMS)$
$q^2~({ m GeV^2})$	C_9^K	[15, 16]	$1.8\substack{+0.8 \\ -1.8}$	$1.4^{+0.9}_{-1.4}$
[1.1, 2]	$1.9\substack{+0.5\\-0.8}$	[16, 17]	$2.1\substack{+0.7 \\ -1.0}$	$1.9\substack{+0.8\\-1.9}$
[2,3]	$3.2\substack{+0.3 \\ -0.4}$	[17, 18]	$2.9\substack{+0.5 \\ -0.5}$	$3.0\substack{+0.5\\-0.6}$
[3,4]	$2.6\substack{+0.4 \\ -0.5}$	[18, 19]	$2.7\substack{+0.6 \\ -0.5}$	
[4, 5]	$2.1\substack{+0.5 \\ -0.7}$	[18, 19.24]		$2.9\substack{+0.6 \\ -0.7}$
[5,6]	$2.4\substack{+0.4 \\ -0.6}$	[19,20]	$0^{+1.6}_{-0}$	
[6,7]	$2.6\substack{+0.4 \\ -0.5}$	[20,21]	$1.4\substack{+0.9 \\ -1.4}$	
[7, 8]	$2.3\substack{+0.5 \\ -0.7}$	[21, 22]	$3.2^{+0.8}_{-0.9}$	
constant	2.4 ^{+0.4} _{-0.5} (χ^2 /dof = 1.35)	[19.24, 22.9]		$2.5_{-1.0}^{+0.7}$
		constant	$2.6 \pm 0.4 \ (\chi^2$	$^{2}/dof = 1.06)$

Table 3.3: Determinations of C_9 from $B \to K \mu^+ \mu^-$ in the low- q^2 (left) and high- q^2 (right) regions. The p-values for the constant fits are 0.17 (low- q^2) and 0.39 (high- q^2).

[M. Bordone, G.Isidori, S. Mächler, AT, <u>2401.18007</u>]

* Correction for *DD***K* vertex:

$$\frac{1}{f_K} \to \frac{1}{f_K} G_K(q^2) ,$$

$$G_K(q^2) = \frac{1}{1 + E_K(q^2)/f_K} = \frac{2m_B f_K}{2m_B f_K + m_B^2 - q_K}$$

Useful consistency check: G_K has a similar scaling to the vector form factor $f_+(q^2)$ for $B_0 \to K_0$

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Form factors

