Long-distance contributions \mathbf{in} rare $b \rightarrow s\ell\ell$ decays 一
/
/ *ℓ*

General Meeting of the LHC EFT Working Group CERN, 2nd-4th December 2024

Arianna Tinari (University of Zürich) Based on G. Isidori, Z. Polonsky, AT [\(2405.17551](https://arxiv.org/abs/2405.17551))

- \rightarrow $b \rightarrow s\bar{\ell}\ell$ decays are very good candidates in the search for BSM.
- ‣ Being suppressed in the SM, they are extremely sensitive to a wide range of NP effects.

- \blacktriangleright **Key** decay channels are $B \to K \bar{\ell} \ell \ell, B \to K^* \bar{\ell} \ell \ell, B_s \to \phi \bar{\ell} \ell \ell, B_s \to \bar{\mu} \mu$.
- ► Observables: branching ratios, (optimized) angular observables $(P_{1,2,3,4,5,6,8}^{(')})$, LFU ratios. 1,2,3,4,5,6,8
- ‣ While LFU ratios are theoretically clean, branching fractions and angular observables are **less clean**, being severely affected by hadronic uncertainties.

• Effective description of
$$
b \rightarrow s\bar{\ell} \ell
$$

decays below the EW scale:

$$
\mathcal{L} = \mathcal{L}_{\text{QCD+QED}}^{[N_f=5]} + \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i \mathcal{O}_i
$$

 \triangleright General features of $b \to s\bar{\ell}\ell$ branching ratios:

 \triangleright Separate tests in the low- or high- q^2 region.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Effective Lagrangian

$$
O_1 = \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu T^a c_L)(\bar{c}_L \gamma^\mu T^a b_L)
$$
\n
$$
O_2 = \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu b_L) \sum_q (\bar{q}_L \gamma^\mu q_L)
$$
\n
$$
O_3 = \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu b_L) \sum_q (\bar{q}_L \gamma^\mu q_L)
$$
\n
$$
O_4 = \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu \gamma_\nu \gamma_\rho b_L) \sum_q (\bar{q}_L \gamma^\mu \gamma^\nu \gamma^\rho q_R)
$$
\n
$$
O_6 = \frac{4\pi}{\alpha_e} (\bar{s}_L \sigma^\mu b_R) F_{\mu\nu}
$$
\n
$$
O_7 = \frac{m_b}{e} (\bar{s}_L \sigma^{\mu\nu} b_R) F_{\mu\nu}
$$
\n
$$
O_8 = \frac{g_s}{e^2} m
$$
\n
$$
O_{10} = (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell)
$$

$$
\mathcal{O}_2 = \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu c_L) (\bar{c}_L \gamma^\mu b_L)
$$

\n
$$
\mathcal{O}_4 = \frac{4\pi}{\alpha_e} (\bar{s}_L^a \gamma^\mu T^a b_L^b) \sum_q (\bar{q}_L^b \gamma^\mu T^a q_L^a)
$$

\n
$$
\mathcal{O}_6 = \frac{4\pi}{\alpha_e} (\bar{s}_L^a \gamma_\mu \gamma_\nu \gamma_\rho T^a b_L^b) \sum_q (\bar{q}_L^b \gamma^\mu \gamma^\nu \gamma^\rho
$$

\n
$$
\mathcal{O}_8 = \frac{g_s}{e^2} m_b (\bar{s}_L \sigma^{\mu\nu} T^a b_R) G^a_{\mu\nu}
$$

\n
$$
\mathcal{O}_{10} = (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma_5 \ell)
$$

Tension in branching ratios

Arianna Tinari (University of Zürich) | CERN, 3.12.24

‣ Long-standing tension in branching ratios:

Tension in the inclusive rate

- \triangleright Tension seen also at the inclusive level at high q^2 :
	- ‣ Compare a semi-inclusive determination based on data from LHCb with the inclusive SM prediction based on:

- **[Z. Ligeti and F. J. Tackmann, 0707.1694]**
- $\left. \sigma_L + \Delta \mathcal{R}_{[q_0^2]} \right|_2$
- **a**
355

[G.Isidori, Z. Polonsky, AT, [2305.03076\]](https://arxiv.org/abs/2305.03076)

$$
R_{\rm incl}^{(\ell)}(q_0^2) = \frac{\int_{q_0^2}^{m_B^2} dq^2 \frac{d\Gamma(B \to X_s \overline{\ell}\ell)}{dq^2}}{\int_{q_0^2}^{m_B^2} dq^2 \frac{d\Gamma(B \to X_u \overline{\ell}\nu)}{dq^2}} = \frac{|V_{tb}V_{ts}^*|^2}{|V_{ub}|^2} \left[\mathcal{R}_L\right]
$$

$$
q_0^2 = 15 \text{ GeV}^2
$$
from Belle,

‣ The inclusive rate has a **different sensitivity** to nonperturbative effects associated with charm-rescattering and is insensitive to local form factor uncertainties.

Tension in angular observables

‣ Long-standing tension in angular observables:

 \triangleright Recent angular analysis by LHCb on $B \to K^* \bar{\mu} \mu$

Arianna Tinari (University of Zürich) | CERN, 3.12.24

[*JHEP* **09 (2024) 026]**

see talk by Zahra Gh.Moghaddam

* Matrix element for exclusive modes:

$$
\mathcal{A}(B \to M\ell^+\ell^-) = \frac{G_F \alpha V_{ts}^* V_{tb}}{\sqrt{2}\pi} \Big[(C_9 \ell \gamma^\mu \ell + C_{10} \ell \gamma^\mu \gamma_5 \ell) \langle M | \bar{s} \gamma_\mu P_L b | \bar{B} \rangle - \frac{1}{q^2} \ell \gamma^\mu \ell \ (2im_b C_7 \langle M | \bar{s} \sigma_{\mu\nu} q^\nu P_R b | B \rangle + \mathcal{H}_\mu)
$$

$$
H_{\lambda} \ell \ell)|_{C_{1-6}} = -i \frac{32\pi^2 \mathcal{N}}{q^2} \bar{\ell} \gamma^{\mu} \ell \int d^4 x e^{iqx} \langle H_{\lambda} | T \{ j_{\mu}^{\text{em}}(x), \sum_{i=1,6} C_i \mathcal{O}_i(0) \} | B \rangle
$$

$$
\mathcal{M}(B \to H_{\lambda} \ell \ell)|_{C_{1-6}} = -i \frac{32\pi^2 \mathcal{N}}{q^2} \bar{\ell} \gamma^{\mu} \ell \int d^4 x e^{iqx} \langle H_{\lambda} | T \{ j_{\mu}^{\text{em}}(x), \sum_{i=1,6} C_{i} \mathcal{O}_{i}(0) \} | B \rangle = \left(\Delta_{9}^{\lambda} (q^2) + \frac{m_B^2}{q^2} \Delta_{7}^{\lambda} \right) \langle H_{\lambda} | \ell^+ \ell^- | \mathcal{O}_9 | B \rangle
$$

The (regular for $q^2 \rightarrow 0$) contributions of the non-local matrix elements of the four-quark operators can be effectively taken into account by a shift in C₉:

There is no doubt that the tension with the data could be well described by a shift in C_9 of $\mathscr{O}(25\%)$ with respect to the SM value BUT **this shift could come from an inaccurate description of the non-local matrix elements.**

Arianna Tinari (University of Zürich) | CERN, 3.12.24

 $= C_9^{\text{SM}} + \Delta_9^{\lambda}(q^2) + C_9^{\text{SD}}$ 9 **LD + NP ?**

$$
C_9 \to C_9^{\lambda}(q^2) = C_9^{\rm SN}
$$

Exclusive modes

- The non-local form factors contain the matrix elements of the **four-quark operators** \mathcal{O}_{1-6} . 1−6
- Note that to all orders in $\alpha_{\text{\tiny S}}$, and to first order in $\alpha_{\text{em}}^{\text{}}$, **these matrix elements have the same** structure as the matrix elements of \mathscr{O}_7 and \mathscr{O}_9 : 7 and \cup 9

Non-local contributions

- Applying dispersive methods is tricky because the analytic structure is quite involved; in q^2 integration domain, requiring a non trivial deformation of the path.
- show a reduced q^2 or λ dependence.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Pictures from [Ciuchini, Fedele, Franco, Paul, Silvestrini, Valli, 2212.10516]

Second type: **rescattering of a pair of charmed and charmed-strange mesons**.

particular, an additional singularity in the case of an **anomalous threshold** could move into the

• The effect of these contributions is indistinguishable from a short-distance effect, since they

See Mutke, Hoferichter, Kubis *JHEP* **07 (2024) 276**

Charm rescattering

from data from HHChPT + QED

- ‣ These amplitudes are associated with physical thresholds which are not reproduced in any of the non-local theory estimates.
- We look at the simplest decay mode, $B^0 \to K^0 \bar{\ell} \ell$, and the largest contributing two-body intermediate state $(D_s D^*$ and $D_s^* D$).
- We obtain an accurate description in the low recoil (or high q^2) limit; we extrapolate to the whole kinematical region introducing appropriate form factors.

Charm rescattering

Goal: estimate topologies where an internal $D^*D_{\rm s}(D^*_{\rm s}D)$ pair can go $D^*D_{\mathcal{S}}(D^*_{\mathcal{S}}D)$

- These amplitudes are associated with physical thresholds which are not reproduced in any of the non-local theory estimates.
- We look at the simplest decay mode, $B^0 \to K^0 \bar{\ell} \ell$, and the largest contributing two-body intermediate state $(D_s D^*$ and $D_s^* D$).
- We obtain an accurate description in the low recoil (or high q^2) limit; we extrapolate to the whole kinematical region introducing appropriate form factors.

- on-shell.
-
-

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Simplest effective interactions able to reproduce these discontinuities.

The model is not meant to analyze rescattering amplitudes associated with different discontinuities, i.e. different intermediate states.

Model

$$
\begin{aligned} \mathcal{L}_{D,\text{free}}&=-\,\frac{1}{2}\big(\Phi^{\mu\nu}_{D^*}\big)^\dagger\,\Phi_{D^*\,\mu\nu}-\frac{1}{2}\big(\Phi^{\mu\nu}_{D^*_s}\big)^\dagger\,\Phi_{D^*_s\,\mu\nu}\\&+\big(D_\mu\Phi_D\big)^\dagger\,D^\mu\Phi_D+\big(D_\mu\Phi_{D_s}\big)^\dagger\,D^\mu\Phi_{D_s}\\&+m_D^2\big[\big(\Phi^{\mu}_{D^*}\big)^\dagger\Phi_{D^*\,\mu}+\big(\Phi^{\mu}_{D^*_s}\big)^\dagger\Phi_{D^*_s\,\mu}\big] \\&-m_D^2\big[\Phi_D^\dagger\,\Phi_D+\Phi_{D_s}^\dagger\Phi_{D_s}\big]+\text{h.c.}\,. \end{aligned}
$$

- Lorentz + Gauge invariance under QED
- $SU(3)$ light-flavor symmetry
- * Heavy-quark spin symmetry

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Dynamics of $D_{(s)}^{(*)}$ mesons close to their mass **shell, determined by:** (*s*)

Model

$$
\begin{split} \mathcal{L}_{D,\text{free}}&=-\,\frac{1}{2}\big(\Phi_{D^*}^{\mu\nu}\big)^\dagger\,\Phi_{D^*\,\mu\nu}-\frac{1}{2}\big(\Phi_{D_s^*}^{\mu\nu}\big)^\dagger\,\Phi_{D_s^*\,\mu\nu}\\&+\big(D_\mu\Phi_D\big)^\dagger\,D^\mu\Phi_D+\big(D_\mu\Phi_{D_s}\big)^\dagger\,D^\mu\Phi_{D_s}\\&+m_D^2\big[\big(\Phi_{D^*}^\mu\big)^\dagger\Phi_{D^*\,\mu}+\big(\Phi_{D_s^*}^\mu\big)^\dagger\Phi_{D_s^*\,\mu}\big]\\&-m_D^2\big[\Phi_D^\dagger\,\Phi_D+\Phi_{D_s}^\dagger\Phi_{D_s}\big]+\text{h.c.}\,. \end{split}
$$

- Lorentz + Gauge invariance under QED
- $SU(3)$ light-flavor symmetry
- * Heavy-quark spin symmetry

Dynamics of $D_{(s)}^{(*)}$ mesons close to their mass **shell, determined by:** (*s*)

$\textbf{Weak}\ B \rightarrow DD^*$ transition described by (using **heavy-quark spin symmetry + data)**

$$
\mathcal{L}_{BD} = g_{DD^*} \left(\Phi_{D_s^*}^{\mu \dagger} \Phi_D \partial_\mu \Phi_B + \Phi_{D_s}^{\dagger} \Phi_{D^*}^{\mu} \partial_\mu \Phi_B \right) + \text{h.c.}
$$

In principle g_{DD^*} could have a phase \rightarrow we maximize over it

Model

$$
\mathcal{L}_{D,\text{free}} = -\frac{1}{2} (\Phi_{D^*}^{\mu\nu})^{\dagger} \Phi_{D^* \mu\nu} - \frac{1}{2} (\Phi_{D_s^*}^{\mu\nu})^{\dagger} \Phi_{D_s^* \mu\nu} \n+ (D_{\mu} \Phi_D)^{\dagger} D^{\mu} \Phi_D + (D_{\mu} \Phi_{D_s})^{\dagger} D^{\mu} \Phi_{D_s} \n+ m_D^2 [(\Phi_{D^*}^{\mu})^{\dagger} \Phi_{D^* \mu} + (\Phi_{D_s^*}^{\mu})^{\dagger} \Phi_{D_s^* \mu}] \n- m_D^2 [\Phi_D^{\dagger} \Phi_D + \Phi_{D_s}^{\dagger} \Phi_{D_s}] + \text{h.c.}.
$$

- Lorentz + Gauge invariance under QED
- $SU(3)$ light-flavor symmetry
- * Heavy-quark spin symmetry

Dynamics of $D_{(s)}^{(*)}$ mesons close to their mass **shell, determined by:** (*s*)

$\textbf{Weak}\ B \rightarrow DD^*$ transition described by (using **heavy-quark spin symmetry + data)**

From HHChPT (valid close to endpoint $q^2 \approx m_B^2$): *B*

$$
\mathcal{L}_{BD} = g_{DD^*} \left(\Phi_{D_s^*}^{\mu \dagger} \Phi_D \partial_\mu \Phi_B + \Phi_{D_s}^{\dagger} \Phi_{D^*}^{\mu} \partial_\mu \Phi_B \right) + \text{h.c.}
$$

In principle g_{DD^*} could have a phase \rightarrow we maximize over it

$$
\mathcal{L}_{DK} = \frac{2ig_{\pi}m_D}{f_K} \big(\Phi_{D^*}^{\mu\dagger} \Phi_{D_s} \partial_{\mu} \Phi_K^{\dagger} - \Phi_D^{\dagger} \Phi_{D_s^*}^{\mu} \partial_{\mu} \Phi_K^{\dagger} \big) + \text{h.c.}
$$

Model

$$
\mathcal{L}_{D,\text{free}} = -\frac{1}{2} (\Phi_{D^*}^{\mu\nu})^{\dagger} \Phi_{D^* \mu\nu} - \frac{1}{2} (\Phi_{D_s^*}^{\mu\nu})^{\dagger} \Phi_{D_s^* \mu\nu} \n+ (D_{\mu} \Phi_D)^{\dagger} D^{\mu} \Phi_D + (D_{\mu} \Phi_{D_s})^{\dagger} D^{\mu} \Phi_{D_s} \n+ m_D^2 [(\Phi_{D^*}^{\mu})^{\dagger} \Phi_{D^* \mu} + (\Phi_{D_s^*}^{\mu})^{\dagger} \Phi_{D_s^* \mu}] \n- m_D^2 [\Phi_D^{\dagger} \Phi_D + \Phi_{D_s}^{\dagger} \Phi_{D_s}] + \text{h.c.}.
$$

$$
\mathcal{L}_{BD} = g_{DD^*} \left(\Phi_{D_s^*}^{\mu \dagger} \Phi_D \partial_\mu \Phi_B + \Phi_{D_s}^{\dagger} \Phi_{D^*}^{\mu} \partial_\mu \Phi_B \right) + \text{h.c.}
$$

In principle g_{DD*} could have a phase \rightarrow we maximize over it

$$
\mathcal{L}_{DK} = \frac{2ig_{\pi}m_D}{f_K} \big(\Phi_{D^*}^{\mu\dagger}\Phi_{D_s}\partial_{\mu}\Phi_K^{\dagger} - \Phi_D^{\dagger}\Phi_{D_s^*}^{\mu}\partial_{\mu}\Phi_K^{\dagger}\big) + \text{h.c.}
$$

- Lorentz + Gauge invariance under QED
- $SU(3)$ light-flavor symmetry
- * Heavy-quark spin symmetry

Dynamics of $D_{(s)}^{(*)}$ mesons close to their mass **shell, determined by:** (*s*)

- $\textbf{Weak}\ B \rightarrow DD^*$ transition described by (using **heavy-quark spin symmetry + data)**
- **From HHChPT** (valid close to endpoint $q^2 \approx m_B^2$): *B*

In the $SU(3)$ -symmetric limit, the diagrams obtained by swapping $D_s^{(*)} \leftrightarrow D^{(*)}$ are symmetric.

Arianna Tinari (University of Zürich) | CERN, 3.12.24

To obtain a reliable estimate **over the entire kinematical range,** we introduce the form factors:

$$
eF_V(q^2)\,,\quad F_V(q^2)=\left\{\begin{array}{ll} 1\,, & q^2=0\,,\\ \sim q^{-2}\,, & q^2\gg m_D^2 \end{array}\right.
$$

$$
\frac{1}{f_K} \to \frac{1}{f_K} G_K(q^2),
$$

$$
G_K(q^2) = \frac{1}{1 + E_K(q^2)/f_K} = \frac{2m_B f_K}{2m_B f_K + m_B^2 - q^2}
$$

Results

 \triangleright Sum of diagrams shows an **ultraviolet divergence**; we use an \overline{MS} -like renormalization scheme to

► Result for these long-distance contributions in the $SU(3)$ – and heavy-quark spin symmetric limit:

- discard it and use the scale dependence to estimate the uncertainty.
-

$$
L_{\mu} = \log(\mu^{2}/m_{D}^{2})
$$
\n
$$
\mathcal{M}_{\text{LD}} = -\frac{eg_{DD^{*}}g_{\pi}F_{V}(q^{2})G_{K}(q^{2})}{8\pi^{2}f_{K}m_{D}}(p_{B} \cdot j_{\text{em}})
$$
\n
$$
\times \left[(2+L_{\mu}) - \delta L(q^{2}, m_{B}^{2}, m_{D}^{2}) \right],
$$
\n
$$
\delta L(q^{2}, m_{B}^{2}, m_{D}^{2}) = \frac{L(m_{B}^{2}, m_{D}^{2}) - L(q^{2}, m_{D}^{2})}{q^{2} - m_{B}^{2}},
$$
\n
$$
\times \left[\sqrt{x(x-4y)} + y \log \left(\frac{2y - x + \sqrt{x(x-4y)}}{2y} \right) \right]
$$
\n
$$
\times \left[\sqrt{x(x-4y)} + y \log \left(\frac{2y - x + \sqrt{x(x-4y)}}{2y} \right) \right]
$$
\n
$$
\text{D the short-distance matrix element:}
$$
\n
$$
\mathcal{M}_{\text{SD}} = \frac{4G_{F}}{\sqrt{2}} \frac{e}{16\pi^{2}} V_{tb}^{*} V_{ts}(p_{B} \cdot j_{\text{em}}) f_{+}(q^{2})(2C_{9})
$$

 \triangleright Compare it to

Results

- ‣ LD contributions do not exceed a few percent relative to the SD one.
- ‣ The **absorptive part** is independent of the renormalization scheme used, and corresponds to the analytic discontinuity of the amplitude corresponding to the kinematical regions where the internal mesons go on-shell.
- ‣ It can be considered model-independent at least at high q^2 .
- ‣ We have separately checked the discontinuities, finding agreement with the loop calculation.

Effective shift in C_9

▸ We can encode the effect of the \mathscr{M}_{LD} via a q^2- **dependent shift in** C_9 :

$$
\delta C_{9,DD^*}^{\text{LD}}(q^2,\mu) = \bar{g} \,\Delta(q^2) \Big[2 + L_{\mu} - \delta L(q^2, m_B^2, m_D^2) \Big] \qquad \Delta(q^2) = -\frac{g_{\pi} m_B F_V(q^2) G_K(q^2)}{2 f_K f_+(q^2)}
$$

- \triangleright Averaging over the low- and high- q^2 regions, we find: $\delta \bar{C}_{9,DD^*}^{\text{LD,low}}(\mu) = -0.003 - 0.003$ $\delta\bar{C}_{9,DD^*}^{\rm LD,high}(\mu) = 0.009 + 0.05$
- Varying the renormalization scale μ in the range $[1,4]$ GeV:

$$
|\delta\bar{C}^{\rm LD}_{9,DD^*}| \leq 0.11
$$

$$
059 i - 0.156 \log \left(\frac{\mu}{m_D}\right)
$$

$$
53 i + 0.063 \log \left(\frac{\mu}{m_D}\right).
$$

$$
\frac{\delta C_9}{C_9^{SM}} \approx 2.5\,\%
$$

Accounting for additional intermediate states

$$
\mathcal{N} = \frac{\sum_{X} \mathcal{M}(B^0 \to X)}{\mathcal{M}(B^0 \to D^*D_s) + \mathcal{M}(B^0 \to DD_s^*)} \approx \frac{1}{2} \sum_{X} \sqrt{\frac{\mathcal{B}(B^0 \to X)}{\mathcal{B}(B^0 \to DD_s^*)}} \approx 3
$$

$$
|\delta C_9^{\rm LD}|\leq {\cal N}|\delta \bar C_{9,DD^*}^{\rm LD}|\leq 0.33\quad -
$$

- \triangleright So far we focused on the D^*D_s or D^*_sD intermediate states, but in principle there are **other states** with $\bar{c}c\bar{s}d$ valence structure.
- ‣ Consider all intermediate states the allow parity-conserving strong interactions with the kaon.
- ‣ Conservative **multiplicity factor** accounting for all possible intermediate states:

$$
\frac{\delta C_9}{C_9^{SM}} \approx 8 - 10\%
$$

of C_9 at low- and high- q^2 provides a useful data-driven check for such long-distance contributions. C_9 at low- and high- q^2

Arianna Tinari (University of Zürich) | CERN, 3.12.24

• The sign of δC_9 is **opposite** in the two cases (regardless of the phase of g_{DD*}): comparing the extraction

- of C_9 at low- and high- q^2 provides a useful data-driven check for such long-distance contributions. C_9 at low- and high- q^2
-

$$
C_9 \to C_9^{\lambda}(q^2) + Y_{q\bar{q}}^{[0]}(q^2) + Y_{b\bar{b}}^{[0]}(q^2) + Y_{c\bar{c}}^{\lambda}(q^2)
$$

Long-distance, no reason to assume it is independent of λ or q^2

encodes (factorizable) perturbative contributions from 4-quark operators

> Short-distance, independent of λ and q^2

encodes the perturbative charmloop contributions and *cc*¯ resonances

• We extract the residual contribution to C_9 from data:

$$
Y_{c\bar{c}}^{\lambda}(q^2) = Y_{c\bar{c}}^{\lambda}(q_0^2) + \frac{16\pi^2}{\mathcal{F}_{\lambda}(q^2)} \Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^2), q_0^2 = 0
$$

$$
\Delta \mathcal{H}_{c\bar{c}}^{\lambda,1P} = \sum_{V} \eta_{V}^{\lambda} e^{i\delta_{V}^{\lambda}} \frac{q^2}{m_{V}^2} A_{V}^{\text{res}}(q^2) \qquad A_{V}^{\text{res}}(q^2) = \frac{m_{V} \Gamma_{V}}{m_{V}^2 - q^2 - i m_{V} \Gamma_{V}}
$$

$$
C_9^{\lambda}(q^2) = C_9^{\rm SM} + C_9^{\rm LD, \lambda}(q^2) + C_9^{\rm SD}
$$

2014 LHCb, 2023 CMS 2016 and 2020 LHCb

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Sign of *δ* C_9

• The sign of δC_9 is **opposite** in the two cases (regardless of the phase of g_{DD*}): comparing the extraction

 \triangleright We perform a fit of C_9 from the branching ratio and angular observables in $B\to K^*\bar\mu\mu$, assuming:

[M. Bordone, G.Isidori, S. Mächler, AT, [2401.18007](https://arxiv.org/abs/2401.18007)]

Arianna Tinari (University of Zürich) | CERN, 3.12.24

 $C_9 = 3.40^{+0.16}_{-0.16}$ (χ^2 /*dof* = 1.5)

The shift in C_9 we find from charm rescattering $+$ NP shift of \sim -1 gives a better global fit than a shift of \sim -1

Importance of extracting the value of C_9 at **different values of** *q*2

Using resonance parameters found by LHCb recently (2405.17347)

Conclusions

- Non-local contributions in $b\to s\ell\ell$ could significantly impact the extraction of $C_9.$ $b\to s\bar{\ell}\ell^{\prime}$ could significantly impact the extraction of C_9
- We have presented an estimate of $B^0 \to K^0 \bar\ell\ell\ell'$ long-distance contributions induced by the rescattering of a charmed and a charmed-strange meson;
- At **high** q^2 the estimate is based on controlled approximations from VMD and HHChPT; at **low** q^2 the extrapolation via form factors is only meant to provide a conservative upper bound;
- For the particular intermediate state we considered, charm rescattering contributions don't seem to be very large. We neglected some effects, but we conservatively accounted for additional intermediate states.

Conclusions

- Non-local contributions in $b\to s\ell\ell$ could significantly impact the extraction of $C_9.$ $b\to s\bar{\ell}\ell^{\prime}$ could significantly impact the extraction of C_9
- We have presented an estimate of $B^0 \to K^0 \bar\ell\ell\ell'$ long-distance contributions induced by the rescattering of a charmed and a charmed-strange meson;
- At **high** q^2 the estimate is based on controlled approximations from VMD and HHChPT; at **low** q^2 the extrapolation via form factors is only meant to provide a conservative upper bound;
- * For the particular intermediate state we considered, charm rescattering contributions don't seem to be very large. We neglected some effects, but we conservatively accounted for additional intermediate states.
- Going forward:
	- At the experimental level, the extraction of C_9 at different values of q^\angle is key. C_9 at different values of q^2
	- At the theoretical level, extension of this method: inclusion of the dipole coupling for the $DD^*\gamma$ vertex, more complicated intermediate states, different modes $(B\to K^*)...$ **Thank you for your attention!**

Backup Slides

Rules

*KDD** *DDγ* and *DDγK*

Diagrams

Arianna Tinari (University of Zürich) | CERN, 3.12.24

Neutral case Charged case

		q^2 (GeV ²)	C_9^K (LHCb)	C_9^K (CMS)
q^2 (GeV ²)	C_9^K	[15, 16]	$1.8^{+0.8}_{-1.8}$	$1.4^{+0.9}_{-1.4}$
[1.1, 2]	$1.9\substack{+0.5\\-0.8}$	[16, 17]	$2.1^{+0.7}_{-1.0}$	$1.9^{+0.8}_{-1.9}$
[2,3]	$3.2^{+0.3}_{-0.4}$	[17, 18]	$2.9^{+0.5}_{-0.5}$	$3.0^{+0.5}_{-0.6}$
[3,4]	$2.6\substack{+0.4\\-0.5}$	[18, 19]	$2.7^{+0.6}_{-0.5}$	
[4, 5]	$2.1^{+0.5}_{-0.7}$	[18, 19.24]		$2.9^{+0.6}_{-0.7}$
[5,6]	$2.4^{+0.4}_{-0.6}$	[19, 20]	$0^{+1.6}_{-0}$	
[6,7]	$2.6\substack{+0.4\\-0.5}$	[20, 21]	$1.4^{+0.9}_{-1.4}$	
$\left[7,8\right]$	$2.3^{+0.5}_{-0.7}$	[21, 22]	$3.2^{+0.8}_{-0.9}$	
constant	$2.4^{+0.4}_{-0.5}$ $(\chi^2/\text{dof} = 1.35)$	$\left[19.24,22.9\right]$		$2.5^{+0.7}_{-1.0}$
		constant	$2.6 \pm 0.4 \ (\chi^2/\text{dof} = 1.06)$	

Table 3.3: Determinations of C_9 from $B \to K\mu^+\mu^-$ in the low- q^2 (left) and high- q^2 (right) regions. The p-values for the constant fits are 0.17 (low- q^2) and 0.39 (high- q^2).

Arianna Tinari (University of Zürich) | CERN, 3.12.24

[M. Bordone, G.Isidori, S. Mächler, AT, [2401.18007](https://arxiv.org/abs/2401.18007)]

Form factors

Correction for *DD***K* **vertex**:

$$
\frac{1}{f_K} \to \frac{1}{f_K} G_K(q^2),
$$

$$
G_K(q^2) = \frac{1}{1 + E_K(q^2)/f_K} = \frac{2m_B f_K}{2m_B f_K + m_B^2 - q^2}
$$

Useful consistency check: G_K has a similar scaling to the vector form factor $f_+(q^2)$ for $B_0\to K_0$

 $\overline{a^2}$