

On the SMEFT Basis for aQGCs

[2411.02483 w/ Durieux, Remmen, Éboli, Gonzalez-Garcia, Kondo, Murayama, Okabe]

NICK RODD | LHC EFT Working Group | 2 December 2024

Dim-8 SMEFT allows anomalous quartic gauge couplings*

[Eboli, Gonzalez-Garcia, Mizukoshi 2006]

aQGCs modify SM couplings (e.g. W^4) and induce new ones (e.g. Z^4)

*Dim-6 contributions strongly constrained by triple gauge couplings, e.g. [Butter+ 2006]

Improvements are a clear target for HL LHC

Very incomplete list!

Evidence for Electroweak Production of $W^{\pm}W^{\pm}jj$ in ppCollisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector

[ATLAS 2014] - sensitive to WWWW

Evidence for electroweak production of two jets in association with a $Z\gamma$ pair in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

[ATLAS 2020] - sensitive to $WWZ\gamma$

Observation of electroweak production of two jets and a Z-boson pair with the ATLAS detector at the LHC

[ATLAS 2020] - sensitive to WWZZ

Observation of photon-induced W^+W^- production in *p p* collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector

Theoretically very interesting due to positivity bounds

Application to the SMEFT, e.g. [Remmen, NLR 2019], [Zhang, Zhou 2020]

BERKELE LAB

Theoretically very interesting due to positivity bounds

Application to the SMEFT, e.g. [Remmen, NLR 2019], [Zhang, Zhou 2020]

BERKELE

Theoretically very interesting due to positivity bounds

Application to the SMEFT, e.g. [Remmen, NLR 2019], [Zhang, Zhou 2020]

BERKELE

Theoretically very interesting due to positivity bounds

Application to the SMEFT, e.g. [Remmen, NLR 2019], [Zhang, Zhou 2020]

Theoretically very interesting due to positivity bounds

Application to the SMEFT, e.g. [Remmen, NLR 2019], [Zhang, Zhou 2020]

BERKELE

aQGCs ideal target for positivity

BERKELE

Step 0 in accessing all of this physics: complete EFT basis for aQGCs

Three types of operators:

Scalar (S-type): $(\partial H)^4$ Mixed (M-type): $(\partial H)^2 F^2$ Tensor (T-type): F^4

But how many of each?

Notation from [Eboli+ 2006]

There has been several attempts

- Almeida, Éboli, Gonzalez-Garcia, Mizukoshi 06, 16, 20
 - Redundancies and omissions corrected in 16 and 20
 - Focused on C-even and P-even operators
 - Two C-odd & P-odd operators missing
- Remmen, NLR 19
 - CP-even and -odd all listed and distinguished
 - CP properties misidentified on 3 operators
- Murphy 20 (see also Li, Ren, Shu, Xiao, Yu, Zheng 20)
 - same operators as RR, but different naming
 - CP-even and -odd operators not distinguished
- Kondo, Murayama, Okabe 22
 - CP-even & odd operators counted using Hilbert series
 - Misidentified two explicit CP-even vs. odd operators

Challenge primarily in identifying the properties of operators under C

Situation had become murky: many papers with wrong basis

Solution: bring all relevant authors together, resolve the issue and publicize that resolution to the community

LHC EFT WG Note: Basis for Anomalous Quartic Gauge Couplings

Gauthier Durieux,^{1,*} Grant N. Remmen,^{2,*} Nicholas L. Rodd,^{3,*} O. J. P. Éboli,⁴ M. C. Gonzalez-Garcia,^{5,6} Dan Kondo,⁷ Hitoshi Murayama,^{3,7} Risshin Okabe⁷ *Editors

- Minimal basis containing all operators, both CP-even and CPodd, with all CP properties identified and explained
- Approved by the LHC WG thanks for feedback, especially the conveners I. Brivio, K. Potamianos, M. Presilla, D. Sutherland
- UFO implementation made publicly available here:
 - <u>https://github.com/gdurieux/aqgc</u>

	aQGC Operator Basis	СР	Almeida, Éboli, Gonzalez-Garcia [3] Remmen & Rodd [4]	Murphy [6]
\mathcal{O}_0^S	$[D_{\mu}H^{\dagger}D_{\nu}H][D^{\mu}H^{\dagger}D^{\nu}H]$	+ +	$\mathcal{O}_{S,0}$	$\mathcal{O}_2^{H^4}$	$Q_{H^4}^{(2)}$
\mathcal{O}_1^S	$[D^\mu H^\dagger D_\mu H] [D^ u H^\dagger D_ u H]$	+ +	$\mathcal{O}_{S,1}$	$\mathcal{O}_3^{H^4}$	$Q_{H^4}^{(3)}$
\mathcal{O}_2^S	$[D_{\mu}H^{\dagger}D_{ u}H][D^{ u}H^{\dagger}D^{\mu}H]$	+ +	$\mathcal{O}_{S,2}$	$\mathcal{O}_1^{H^4}$	$Q_{H^4}^{(1)}$
\mathcal{O}_0^M	$rac{1}{2}[D^{\mu}H^{\dagger}D_{\mu}H]W^{I}_{ u ho}W^{I u ho}$	+ +	$\mathcal{O}_{M,0}$	$rac{1}{2}\mathcal{O}_2^{H^2W^2}$	$rac{1}{2}Q^{(2)}_{W^2H^2D^2}$
\mathcal{O}_1^M	$-rac{1}{2}[D^{\mu}H^{\dagger}D^{ u}H]W^{I}_{\mu ho}W^{I}_{ u}{}^{ ho}$	+ +	$\mathcal{O}_{M,1}$	$-rac{1}{2}\mathcal{O}_1^{H^2W^2}$	$-rac{1}{2}Q^{(1)}_{W^2H^2D^2}$
\mathcal{O}_2^M	$[D^\mu H^\dagger D_\mu H] B_{ u ho} B^{ u ho}$	+ +	$\mathcal{O}_{M,2}$	$\mathcal{O}_2^{H^2B^2}$	$Q^{(2)}_{B^2 H^2 D^2}$
\mathcal{O}_3^M	$-[D^\mu H^\dagger D^ u H] B_{\mu ho} B_ u^{ ho}$	+ +	$\mathcal{O}_{M,3}$	$-\mathcal{O}_1^{H^2B^2}$	$-Q^{(1)}_{B^2H^2D^2}$
\mathcal{O}_4^M	$[D^{\mu}H^{\dagger} au^{I}D_{\mu}H]B^{ u ho}W^{I}_{ u ho}$	+ +	$\mathcal{O}_{M,4}$	$\mathcal{O}_1^{H^2BW}$	$Q^{(1)}_{WBH^2D^2}$
\mathcal{O}_5^M	$[D^{\mu}H^{\dagger}\tau^{I}D^{\nu}H](B_{\mu}^{\ ho}W^{I}_{ u ho}+B_{ u}^{\ ho}W^{I}_{\mu ho})$	+ +	$\mathcal{O}_{M,5}$	$\mathcal{O}_3^{H^2BW}$	$Q^{(4)}_{WBH^2D^2}$
\mathcal{O}_7^M	$[D^\mu H^\dagger au^I au^J D^ u H] W^J_{\mu ho} W^I_ u^{ ho}$	+ +	$\mathcal{O}_{M,7}$	$rac{1}{4}\mathcal{O}_{1}^{H^{2}W^{2}}-rac{1}{2}\mathcal{O}_{3}^{H^{2}W^{2}}$	$rac{1}{4}Q^{(1)}_{W^2H^2D^2} - rac{1}{2}Q^{(4)}_{W^2H^2D^2}$
\mathcal{O}_8^M	$i[D^{\mu}H^{\dagger} au^{I}D^{ u}H](B_{\mu}^{\ ho}\widetilde{W}^{I}_{ u ho}-B_{ u}^{\ ho}\widetilde{W}^{I}_{\mu ho})$			$\widetilde{\mathcal{O}}_2^{H^2BW}$	$Q^{(5)}_{WBH^2D^2}$
$\mathcal{O}_9^M \; \epsilon^M$	${}^{IJK}[D^{\mu}H^{\dagger}\tau^{I}D^{\nu}H](W^{J}_{\mu\rho}\widetilde{W}^{K}_{\nu}{}^{\rho}-\widetilde{W}^{J}_{\mu\rho}W^{K}_{\nu}{}^{\rho})$) – –		$\widetilde{\mathcal{O}}_2^{H^2W^2}$	$Q^{(5)}_{W^2 H^2 D^2}$
\mathcal{O}_0^T	$rac{1}{4}W^I_{\mu u}W^{I\ \mu u}W^J_{ ho\sigma}W^{J\ ho\sigma}$	+ +	$\mathcal{O}_{T,0}$	$rac{1}{4}\mathcal{O}_1^{W^4}$	$rac{1}{4} Q^{(1)}_{W^4}$
\mathcal{O}_1^T	$\frac{1}{4}W^I_{\mu\nu}W^{J\ \mu\nu}W^{J\ \mu\nu}W^{I\ \rho\sigma}W^{J\ \rho\sigma}$	+ +	$\mathcal{O}_{T,1}$	$rac{1}{4}\mathcal{O}_3^{W^4}$	$rac{1}{4}Q^{(3)}_{W^4}$
\mathcal{O}_2^T	$rac{1}{4}W^I_{\mu u}W^{I ulpha}W^J_{lphaeta}W^{Jeta\mu}$	+ +	$\mathcal{O}_{T,2}$	$\frac{1}{16}\mathcal{O}_1^{W^4} + \frac{1}{16}\mathcal{O}_3^{W^4} + \frac{1}{16}\mathcal{O}_4^{W^4}$	$rac{1}{16}Q_{W^4}^{(1)}+rac{1}{16}Q_{W^4}^{(3)}+rac{1}{16}Q_{W^4}^{(4)}$
\mathcal{O}_3^T	$rac{1}{4}W^I_{\mu u}W^{J ulpha}W^{J holpha}W^{Jeta\mu}$	+ +	$\mathcal{O}_{T,3}$	$rac{1}{8}\mathcal{O}_3^{W^4}+rac{1}{16}\mathcal{O}_2^{W^4}$	$rac{1}{8}Q^{(3)}_{W^4}+rac{1}{16}Q^{(2)}_{W^4}$
\mathcal{O}_4^T	$rac{1}{2}W^{I}_{\mu u}B^{ ulpha}W^{A}_{lphaeta}B^{eta\mu}$	+ +	$\mathcal{O}_{T,4}$	$rac{1}{8}\mathcal{O}_{2}^{B^{2}W^{2}}+rac{1}{4}\mathcal{O}_{3}^{B^{2}W^{2}}$	$rac{1}{8}Q^{(2)}_{W^2B^2}+rac{1}{4}Q^{(3)}_{W^2B^2}$
\mathcal{O}_5^T	$rac{1}{2}B_{\mu u}B^{\mu u}W^{I}_{ ho\sigma}W^{I ho\sigma}$	+ +	$\mathcal{O}_{T,5}$	$rac{1}{2}\mathcal{O}_1^{B^2W^2}$	$rac{1}{2} Q^{(1)}_{W^2 B^2}$
\mathcal{O}_6^T	${1\over 2} B_{\mu u} W^{I\mu u} B_{ ho\sigma} W^{I ho\sigma}$	+ +	$\mathcal{O}_{T,6}$	$rac{1}{2}\mathcal{O}_3^{B^2W^2}$	$rac{1}{2} Q^{(3)}_{W^2 B^2}$
\mathcal{O}_7^T	$rac{1}{2}W^{I}_{\mu u}W^{I ulpha}B_{lphaeta}B^{eta\mu}$	+ +	$\mathcal{O}_{T,7}$ $rac{1}{8}$	$\mathcal{O}_1^{B^2W^2} + \frac{1}{8}\mathcal{O}_3^{B^2W^2} + \frac{1}{8}\mathcal{O}_4^{B^2W^2}$	$\frac{1}{8}Q^{(1)}_{W^2B^2} + \frac{1}{8}Q^{(3)}_{W^2B^2} + \frac{1}{8}Q^{(4)}_{W^2B^2}$
\mathcal{O}_8^T	$B_{\mu u}B^{\mu u}B_{ ho\sigma}B^{ ho\sigma}$	+ +	$\mathcal{O}_{T,8}$	$\mathcal{O}_1^{B^4}$	$Q^{(1)}_{B^4}$
\mathcal{O}_9^T	$B_{\mu u}B^{ ulpha}B_{lphaeta}B^{eta\mu}$	+ +	${\cal O}_{T,9}$	$rac{1}{2}\mathcal{O}_1^{B^4}+rac{1}{4}\mathcal{O}_2^{B^4}$	$rac{1}{2}Q^{(1)}_{B^4}+rac{1}{4}Q^{(2)}_{B^4}$

Complete list of CP even operators CP odd also provided (see backup)

BERKELEY LAB

rerer

Follow AEG as already widely used - mapping to other bases provided

	aQGC Operator Basis	С	Р	Almeida, Éboli, Gonzalez-Garcia [3	Remmen & Rodd [4]	Murphy [6]
\mathcal{O}_0^S	$[D_{\mu}H^{\dagger}D_{ u}H][D^{\mu}H^{\dagger}D^{ u}H]$	+	+	$\mathcal{O}_{S,0}$	$\mathcal{O}_2^{H^4}$	$Q_{H^4}^{(2)}$
\mathcal{O}_1^S	$[D^\mu H^\dagger D_\mu H] [D^ u H^\dagger D_ u H]$	+	+	$\mathcal{O}_{S,1}$	$\mathcal{O}_3^{H^4}$	$Q_{H^4}^{(3)}$
\mathcal{O}_2^S	$[D_{\mu}H^{\dagger}D_{ u}H][D^{ u}H^{\dagger}D^{\mu}H]$	+	+	$\mathcal{O}_{S,2}$	$\mathcal{O}_1^{H^4}$	$Q_{H^4}^{(1)}$
\mathcal{O}_0^M	$rac{1}{2}[D^{\mu}H^{\dagger}D_{\mu}H]W^{I}_{ u ho}W^{I u ho}$	+	+	$\mathcal{O}_{M,0}$	$rac{1}{2}\mathcal{O}_2^{H^2W^2}$	$rac{1}{2}Q^{(2)}_{W^2H^2D^2}$
\mathcal{O}_1^M	$-rac{1}{2}[D^{\mu}H^{\dagger}D^{ u}H]W^{I}_{\mu ho}W^{I}_{ u}{}^{ ho}$	+	+	$\mathcal{O}_{M,1}$	$-rac{1}{2}\mathcal{O}_1^{H^2W^2}$	$-rac{1}{2}Q^{(1)}_{W^2H^2D^2}$
\mathcal{O}_2^M	$[D^{\mu}H^{\dagger}D_{\mu}H]B_{ u ho}B^{ u ho}$	+	+	$\mathcal{O}_{M,2}$	$\mathcal{O}_2^{H^2B^2}$	$Q^{(2)}_{B^2 H^2 D^2}$
\mathcal{O}_3^M	$-[D^\mu H^\dagger D^ u H] B_{\mu ho} B_ u^{ ho}$	+	+	$\mathcal{O}_{M,3}$	$-\mathcal{O}_1^{H^2B^2}$	$-Q^{(1)}_{B^2H^2D^2}$
\mathcal{O}_4^M	$[D^{\mu}H^{\dagger} au^{I}D_{\mu}H]B^{ u ho}W^{I}_{ u ho}$	+	+	$\mathcal{O}_{M,4}$	$\mathcal{O}_1^{H^2BW}$	$Q^{(1)}_{WBH^2D^2}$
\mathcal{O}_5^M	$[D^{\mu}H^{\dagger}\tau^{I}D^{\nu}H](B_{\mu}^{\ \rho}W^{I}_{\nu\rho}+B_{\nu}^{\ \rho}W^{I}_{\mu\rho})$	+	+	$\mathcal{O}_{M,5}$	$\mathcal{O}_3^{H^2BW}$	$Q^{(4)}_{WBH^2D^2}$
\mathcal{O}_7^M	$[D^{\mu}H^{\dagger} au^{I} au^{J}D^{ u}H]W^{J}_{\mu ho}W^{I}_{ u}{}^{ ho}$	+	+	$\mathcal{O}_{M,7}$	$\frac{1}{4}\mathcal{O}_{1}^{H^{2}W^{2}}-\frac{1}{2}\mathcal{O}_{3}^{H^{2}W^{2}}$	$rac{1}{4}Q^{(1)}_{W^2H^2D^2} - rac{1}{2}Q^{(4)}_{W^2H^2D^2}$
\mathcal{O}_8^M	$i[D^{\mu}H^{\dagger}\tau^{I}D^{\nu}H](B_{\mu}^{\ \rho}\widetilde{W}^{I}_{\nu\rho}-B_{\nu}^{\ \rho}\widetilde{W}^{I}_{\mu\rho})$	—	—		$\widetilde{\mathcal{O}}_2^{H^2BW}$	$Q^{(5)}_{WBH^2D^2}$
\mathcal{O}_9^M	$\epsilon^{IJK} [D^{\mu}H^{\dagger}\tau^{I}D^{\nu}H] (W^{J}_{\mu\rho}\widetilde{W}^{K}_{\nu}{}^{\rho} - \widetilde{W}^{J}_{\mu\rho}W^{K}_{\nu}{}^{\rho})$	_	_		$\widetilde{\mathcal{O}}_2^{H^2W^2}$	$Q^{(5)}_{W^2 H^2 D^2}$
\mathcal{O}_0^T	$\frac{1}{4}W^I_{\mu\nu}W^{I\ \mu\nu}W^J_{\rho\sigma}W^{J\ \rho\sigma}$	+	+	$\mathcal{O}_{T,0}$	$rac{1}{4}\mathcal{O}_1^{W^4}$	$rac{1}{4}Q^{(1)}_{W^4}$
\mathcal{O}_1^T	$rac{1}{4}W^I_{\mu u}W^{J\ \mu u}W^{J\ \mu u}W^J^{ ho\sigma}$	+	+	$\mathcal{O}_{T,1}$	$\frac{1}{4}\mathcal{O}_3^{W^4}$	$rac{1}{4}Q^{(3)}_{W^4}$
\mathcal{O}_2^T	$rac{1}{4}W^{I}_{\mu u}W^{I ulpha}W^{J}_{lphaeta}W^{Jeta\mu}$	+	+	$\mathcal{O}_{T,2}$	$\frac{1}{16}\mathcal{O}_1^{W^4} + \frac{1}{16}\mathcal{O}_3^{W^4} + \frac{1}{16}\mathcal{O}_4^{W^4}$	$rac{1}{16}Q_{W^4}^{(1)}+rac{1}{16}Q_{W^4}^{(3)}+rac{1}{16}Q_{W^4}^{(4)}$
\mathcal{O}_3^T	$rac{1}{4}W^{I}_{\mu u}W^{J ulpha}W^{I}_{lphaeta}W^{Jeta\mu}$	+	+	$\mathcal{O}_{T,3}$	$\frac{1}{8}\mathcal{O}_{3}^{W^{4}}+\frac{1}{16}\mathcal{O}_{2}^{W^{4}}$	$rac{1}{8}Q^{(3)}_{W^4}+rac{1}{16}Q^{(2)}_{W^4}$
\mathcal{O}_4^T	$rac{1}{2}W^I_{\mu u}B^{ ulpha}W^I_{lphaeta}B^{eta\mu}$	+	+	$\mathcal{O}_{T,4}$	$\frac{1}{8}\mathcal{O}_{2}^{B^{2}W^{2}}+\frac{1}{4}\mathcal{O}_{3}^{B^{2}W^{2}}$	$rac{1}{8}Q^{(2)}_{W^2B^2}+rac{1}{4}Q^{(3)}_{W^2B^2}$
\mathcal{O}_5^T	$rac{1}{2}B_{\mu u}B^{\mu u}W^{I}_{ ho\sigma}W^{I ho\sigma}$	+	+	$\mathcal{O}_{T,5}$	$rac{1}{2}\mathcal{O}_1^{B^2W^2}$	$rac{1}{2}Q^{(1)}_{W^2B^2}$
\mathcal{O}_6^T	$rac{1}{2}B_{\mu u}W^{I\mu u}B_{ ho\sigma}W^{I ho\sigma}$	+	+	${\cal O}_{T,6}$	$\frac{1}{2}\mathcal{O}_3^{B^2W^2}$	$rac{1}{2}Q^{(3)}_{W^2B^2}$
\mathcal{O}_7^T	$rac{1}{2}W^I_{\mu u}W^{I ulpha}B_{lphaeta}B^{eta\mu}$	+	+	$\mathcal{O}_{T,7}$ $rac{1}{8}\mathcal{C}$	$\mathcal{D}_{1}^{B^{2}W^{2}} + \frac{1}{8}\mathcal{O}_{3}^{B^{2}W^{2}} + \frac{1}{8}\mathcal{O}_{4}^{B^{2}W^{2}}$	$\frac{1}{8}Q^{(1)}_{W^2B^2} + \frac{1}{8}Q^{(3)}_{W^2B^2} + \frac{1}{8}Q^{(4)}_{W^2B^2}$
\mathcal{O}_8^T	$B_{\mu u}B^{\mu u}B_{ ho\sigma}B^{ ho\sigma}$	+	+	$\mathcal{O}_{T,8}$	$\mathcal{O}_1^{B^*}$	$Q^{(1)}_{B^4}$
\mathcal{O}_9^T	$B_{\mu u}B^{ ulpha}B_{lphaeta}B^{eta\mu}$	+	+	$\mathcal{O}_{T,9}$	$rac{1}{2}\mathcal{O}_1^{B^*}+rac{1}{4}\mathcal{O}_2^{B^*}$	$rac{1}{2}Q^{(1)}_{B^4}+rac{1}{4}Q^{(2)}_{B^4}$

Complete list of CP even operators CP odd also provided (see backup)

BERKELEY LAB

Follow AEG as already widely used - mapping to other bases provided

	aQGC Operator Basis	С	Р	Almeida, Éboli, Gonzalez-Garcia [3] Remmen & Rodd [4]	Murphy [6]
\mathcal{O}_0^S	$[D_{\mu}H^{\dagger}D_{ u}H][D^{\mu}H^{\dagger}D^{ u}H]$	+	+	$\mathcal{O}_{S,0}$	$\mathcal{O}_2^{H^4}$	$Q_{H^4}^{(2)}$
\mathcal{O}_1^S	$[D^\mu H^\dagger D_\mu H] [D^ u H^\dagger D_ u H]$	+	+	$\mathcal{O}_{S,1}$	$\mathcal{O}_3^{H^4}$	$Q_{H^4}^{(3)}$
\mathcal{O}_2^S	$[D_{\mu}H^{\dagger}D_{ u}H][D^{ u}H^{\dagger}D^{\mu}H]$	+	+	$\mathcal{O}_{S,2}$	$\mathcal{O}_1^{H^4}$	$Q_{H^4}^{(1)}$
\mathcal{O}_0^M	$rac{1}{2}[D^{\mu}H^{\dagger}D_{\mu}H]W^{I}_{ u ho}W^{I u ho}$	+	+	$\mathcal{O}_{M,0}$	$rac{1}{2}\mathcal{O}_2^{H^2W^2}$	$rac{1}{2}Q^{(2)}_{W^2H^2D^2}$
\mathcal{O}_1^M	$-rac{1}{2}[D^{\mu}H^{\dagger}D^{ u}H]W^{I}_{\mu ho}W^{V}_{ u}{}^{ ho}$	+	+	$\mathcal{O}_{M,1}$	$-rac{1}{2}\mathcal{O}_1^{H^2W^2}$	$-rac{1}{2}Q^{(1)}_{W^2H^2D^2}$
\mathcal{O}_2^M	$[D^\mu H^\dagger D_\mu H] B_{ u ho} B^{ u ho}$	+	+	$\mathcal{O}_{M,2}$	$\mathcal{O}_2^{H^2B^2}$	$Q^{(2)}_{B^2 H^2 D^2}$
\mathcal{O}_3^M	$-[D^\mu H^\dagger D^ u H] B_{\mu ho} B_ u^{ ho}$	+	+	$\mathcal{O}_{M,3}$	$-\mathcal{O}_1^{H^2B^2}$	$-Q^{(1)}_{B^2H^2D^2}$
\mathcal{O}_4^M	$[D^{\mu}H^{\dagger} au^{I}D_{\mu}H]B^{ u ho}W^{I}_{ u ho}$	+	+	${\cal O}_{M,4}$	$\mathcal{O}_1^{H^2BW}$	$Q^{(1)}_{WBH^2D^2}$
\mathcal{O}_5^M	$[D^{\mu}H^{\dagger}\tau^{I}D^{\nu}H](B_{\mu}^{\ \rho}W_{\nu\rho}^{I}+B_{\nu}^{\ \rho}W_{\mu\rho}^{I})$	+	+	${\cal O}_{M,5}$	$\mathcal{O}_3^{H^2BW}$	$Q^{(4)}_{WBH^2D^2}$
\mathcal{O}_7^M	$[D^{\mu}H^{\dagger} au^{I} au^{J}D^{ u}H]W^{J}_{\mu ho}W^{I}_{ u}{}^{ ho}$	+	+	${\cal O}_{M,7}$	$\frac{1}{4}\mathcal{O}_{1}^{H^{2}W^{2}}-\frac{1}{2}\mathcal{O}_{3}^{H^{2}W^{2}}$	$rac{1}{4}Q^{(1)}_{W^2H^2D^2} - rac{1}{2}Q^{(4)}_{W^2H^2D^2}$
\mathcal{O}_8^M	$i[D^{\mu}H^{\dagger}\tau^{I}D^{\nu}H](B_{\mu}^{\ \rho}\widetilde{W}^{I}_{\nu\rho}-B_{\nu}^{\ \rho}\widetilde{W}^{I}_{\mu\rho})$	-	—		$\widetilde{\mathcal{O}}_2^{H^2BW}$	$Q^{(5)}_{WBH^2D^2}$
\mathcal{O}_9^M	$\epsilon^{IJK} [D^{\mu} H^{\dagger} \tau^{I} D^{\nu} H] (W^{J}_{\mu\rho} \widetilde{W}^{K\rho}_{\nu} - \widetilde{W}^{J}_{\mu\rho} W^{K\rho}_{\nu}$) –	_		$\widetilde{\mathcal{O}}_2^{H^2W^2}$	$Q^{(5)}_{W^2 H^2 D^2}$
6M	¹ in original AEG basis but redun	dan	t	$\mathcal{O}_{T,0}$	$rac{1}{4}\mathcal{O}_1^{W^4}$	$rac{1}{4}Q^{(1)}_{W^4}$
6	M are new C9D add	uan		$\mathcal{O}_{T,1}$	$\frac{1}{4}\mathcal{O}_3^{W^2}$	$rac{1}{4}Q_{W^4}^{(3)}$
	$\mathcal{O}_{8,9}$ are new, C&P out			$\mathcal{O}_{T,2}$	$\frac{1}{16}\mathcal{O}_{1}^{W^{*}} + \frac{1}{16}\mathcal{O}_{3}^{W^{*}} + \frac{1}{16}\mathcal{O}_{4}^{W^{*}}$	$rac{1}{16}Q_{W^4}^{(1)} + rac{1}{16}Q_{W^4}^{(3)} + rac{1}{16}Q_{W^4}^{(4)}$
\mathcal{O}_3^T	$rac{1}{4}W^{I}_{\mu u}W^{J ulpha}W^{I}_{lphaeta}W^{Jeta\mu}$	+	+	$\mathcal{O}_{T,3}$	$\frac{1}{8}\mathcal{O}_{3}^{W^{*}} + \frac{1}{16}\mathcal{O}_{2}^{W^{*}}$	$rac{1}{8}Q_{W^4}^{(3)}+rac{1}{16}Q_{W^4}^{(2)}$
\mathcal{O}_4^T	$rac{1}{2}W^I_{\mu u}B^{ ulpha}W^I_{lphaeta}B^{eta\mu}$	+	+	$\mathcal{O}_{T,4}$	$\frac{1}{8}\mathcal{O}_{2}^{B^{2}W^{2}}+\frac{1}{4}\mathcal{O}_{3}^{B^{2}W^{2}}$	$rac{1}{8}Q^{(2)}_{W^2B^2}+rac{1}{4}Q^{(3)}_{W^2B^2}$
\mathcal{O}_5^T	$rac{1}{2}B_{\mu u}B^{\mu u}W^{I}_{ ho\sigma}W^{I ho\sigma}$	+	+	$\mathcal{O}_{T,5}$	$rac{1}{2}\mathcal{O}_1^{B^2W^2}$	$rac{1}{2}Q^{(1)}_{W^2B^2}$
\mathcal{O}_6^T	$rac{1}{2}B_{\mu u}W^{I\ \mu u}B_{ ho\sigma}W^{I\ ho\sigma}$	+	+	$\mathcal{O}_{T,6}$	$\frac{1}{2}\mathcal{O}_{3}^{B^{2}W^{2}}$	$rac{1}{2}Q^{(3)}_{W^2B^2}$
\mathcal{O}_7^T	$rac{1}{2}W^{I}_{\mu u}W^{I ulpha}B_{lphaeta}B^{eta\mu}$	+	+	$\mathcal{O}_{T,7}$ $\frac{1}{8}$	$\mathcal{O}_1^{B^2W^2} + \frac{1}{8}\mathcal{O}_3^{B^2W^2} + \frac{1}{8}\mathcal{O}_4^{B^2W^2}$	$\frac{1}{8}Q_{W^{2}B^{2}}^{(1)} + \frac{1}{8}Q_{W^{2}B^{2}}^{(3)} + \frac{1}{8}Q_{W^{2}B^{2}}^{(4)}$
\mathcal{O}_8^T	$B_{\mu u}B^{\mu u}B_{ ho\sigma}B^{ ho\sigma}$	+	+	$\mathcal{O}_{T,8}$	$\mathcal{O}_1^{B^*}$	$Q^{(1)}_{B^4}$
\mathcal{O}_9^T	$B_{\mu u}B^{ ulpha}B_{lphaeta}B^{eta\mu}$	+	+	$\mathcal{O}_{T,9}$	$rac{1}{2}\mathcal{O}_1^{B^4}+rac{1}{4}\mathcal{O}_2^{B^4}$	$rac{1}{2}Q^{(1)}_{B^4}+rac{1}{4}Q^{(2)}_{B^4}$

Complete list of CP even operators CP odd also provided (see backup)

BERKELEY LAB

rerer

With the basis resolved, we can get back to physics

Minimal example: custodially symmetric Higgs sector

Rewrite three Higgs aQGCs as follows

$$\mathcal{O}_{+} = \frac{1}{2}(\mathcal{O}_{0}^{S} + \mathcal{O}_{2}^{S})$$
$$\mathcal{O}_{-} = \frac{1}{2}(\mathcal{O}_{0}^{S} - \mathcal{O}_{2}^{S})$$
$$\mathcal{O}_{\times} = \mathcal{O}_{1}^{S}$$

With the basis resolved, we can get back to physics

Minimal example: custodially symmetric Higgs sector

Rewrite three Higgs aQGCs as follows

Minimal basis for studying positivity

Discovery in the forbidden region: perverse UV or wrong EFT?

BERKELEY Nick Rodd | On the SMEFT Basis for aQGCs

Discovery in the forbidden region: perverse UV or wrong EFT?

Based on ongoing work with Grant Remmen

More broadly, ultimate goal is to incorporate positivity bounds into future aQGC searches at the LHC

Conclusion

With the aQGC basis resolved, time to get back to physics!

NICK RODD | LHC EFT Working Group | 2 December 2024

Backup Slides

CP Odd Operators

	aQGC Operator Basis	С	Р	AEG [3]	RR [4]	M [6]
\mathscr{O}_1^M	$[D^{\mu}H^{\dagger}D_{\mu}H]B_{ u ho}\widetilde{B}^{ u ho}$	+	_	N/A	$\widetilde{\mathcal{O}}_{1}^{H^{2}B^{2}}$	$Q^{(3)}_{B^2H^2D^2}$
\mathscr{O}_2^M	$[D^{\mu}H^{\dagger} au^{I}D_{\mu}H]B_{ u ho}\widetilde{W}^{I u ho}$	+	_	N/A	$\widetilde{\mathcal{O}}_{1}^{H^{2}BW}$	$Q^{(2)}_{WBH^2D^2}$
\mathscr{O}_3^M	$i[D^{\mu}H^{\dagger} au^{I}D^{ u}H](B_{\mu ho}W^{I\ ho}_{ u}-B_{ u ho}W^{I\ ho}_{\mu})$	_	+	N/A	$\mathcal{O}_2^{H^2BW}$	$Q^{(3)}_{WBH^2D^2}$
\mathscr{O}_4^M	$[D^{\mu}H^{\dagger}\tau^{I}D^{\nu}H](B_{\mu\rho}\widetilde{W}_{\nu}^{I}{}^{\rho}+B_{\nu\rho}\widetilde{W}_{\mu}^{I}{}^{\rho})$	+	_	N/A	$\widetilde{\mathcal{O}}_3^{H^2BW}$	$Q^{(6)}_{WBH^2D^2}$
\mathscr{O}_5^M	$[D^{\mu}H^{\dagger}D_{\mu}H]W^{I}_{ u ho}\widetilde{W}^{I u ho}$	+	_	N/A	$\widetilde{\mathcal{O}}_{1}^{H^{2}W^{2}}$	$Q^{(3)}_{W^2 H^2 D^2}$
\mathscr{O}_6^M	$i \epsilon^{IJK} [D^{\mu} H^{\dagger} \tau^{I} D^{\nu} H] (W^{J}_{\mu\rho} \widetilde{W}^{K\rho}_{\nu} + \widetilde{W}^{J}_{\mu\rho} W^{K\rho}_{\nu})$	+	_	N/A	$\widetilde{\mathcal{O}}_3^{H^2W^2}$	$Q^{(6)}_{W^2 H^2 D^2}$
\mathscr{O}_1^T	$B_{\mu u}B^{\mu u}B_{ ho\sigma}\widetilde{B}^{ ho\sigma}$	+	_	N/A	${\widetilde{\mathcal{O}}_1^B}^4$	$Q^{(3)}_{B^4}$
\mathscr{O}_2^T	$B_{\mu u}\widetilde{B}^{\mu u}W^{I}_{ ho\sigma}W^{I ho\sigma}$	+	_	N/A	${\widetilde{\mathcal{O}}_1^{B^2W^2}}$	$Q^{(5)}_{W^2B^2}$
\mathscr{O}_3^T	$B_{\mu u}B^{\mu u}W^I_{ ho\sigma}\widetilde{W}^{I ho\sigma}$	+	_	N/A	$\widetilde{\mathcal{O}}_2^{B^2W^2}$	$Q_{W^2B^2}^{(6)}$
\mathscr{O}_4^T	$B_{\mu u}W^{I\mu u}B_{ ho\sigma}\widetilde{W}^{I ho\sigma}$	+	_	N/A	$\widetilde{\mathcal{O}}_3^{B^2W^2}$	$Q_{W^2B^2}^{(7)}$
\mathscr{O}_5^T	$W^{I}_{\mu u}W^{I\ \mu u}W^{J\ ho\sigma}\widetilde{W}^{J\ ho\sigma}$	+	_	N/A	$\widetilde{\mathcal{O}}_1^{W^4}$	$Q_{W^4}^{(5)}$
\mathscr{O}_6^T	$W^{I}_{\mu u}W^{J\mu u}W^{J\mu u}W^{I}_{ ho\sigma}\widetilde{W}^{J ho\sigma}$	+	—	N/A	$\widetilde{\mathcal{O}}_2^{W^4}$	$Q_{W^4}^{(6)}$

