

EFT in charged current B decays at LHCb

Abhijit Mathad, CERN

On behalf of LHCb collaboration 8th General Meeting of LHC EFT WG Geneva, Switzerland

Paradise for SM precision tests

Charged current: BF~ few %. **Probing indirectly energy regions ~ 10 TeV.**

Tree level decays perfect holiday destination?

Trouble in paradise

Charged current: BF~ few %. **Probing indirectly energy regions ~ 10 TeV.**

An island full of trouble...

Trouble in paradise

4

Trouble involving 3^{rd} gen leptons ($b \rightarrow c\tau\nu$)

LFU trouble (exp): $\sim 3\sigma$ tension

NP? Can indep. measurements beyond simple BF ratio confirm/refute it?

LFU trouble (theory)

All good with the lighter leptons $b \rightarrow x l v$? No

Long standing tension $\sim 3 \sigma$

A_{FB} Vs longitudinal polarisation of D^*

[Talk by Guido Martinelli]

Differential distribution b/w experiments and LQCD don't agree!

At what level can New Physics (NP) affect the interactions with light leptons?

Effective Hamiltonian $b \rightarrow c l v$

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[(1 + C_{V_L}) \mathcal{O}_{C_{V_L}} + C_{V_R} \mathcal{O}_{C_{V_R}} + C_{S_L} \mathcal{O}_{C_{S_L}} + C_{S_R} \mathcal{O}_{C_{S_R}} + C_{T_L} \mathcal{O}_{C_{T_L}} \right] + h.c.$$
*Assuming left-handed ν . Five more for RH ν
*Masses and the form of the equation of the

Need to disentangle short distance (WCs) from long distance (hadronic form factor)!

What New Physics models?

Current bounds from global fits

 $b \rightarrow c \tau \nu$

 $b \rightarrow c \mu \nu$

 $b \rightarrow cev$

[KEK-TH-2464, JHEP 09 (2019) 103]

NP can affect light leptons at per mille level!

Loose bounds on NP!

Challenges at LHC

Reconstructing B rest frame with missing neutrinos

Degradation in resolution

Model independence

Large calibrated simulation samples

Signal & bkg discremination

Large varied bkg knowledge required

Challenges at LHC: B rest frame reconstruction

B mom. reconstructed with quadratic ambiguity

B mom. reconstructed with rest frame approx.: $p_B^{\parallel} \propto p_{vis}^{\parallel}$

B mom. reconstructed upto **two quadratic ambiguities** (4 solutions).

Use ML techniques (e.g. Gaussian Process regression) to break the ambiguities.

Challenges at LHC: Resolution degradation

Muonic tau: Large yield but worse resolution.

Hadronic tau: Good resolution lower reco. efficiency

Challenges at LHC: Large backgrounds

Challenges at LHC: Which bkgs for muonic τ ?

MisID bkg: $\overline{B} \rightarrow D^{(*)}\pi^{-}$ with $\pi^{-} \rightarrow \mu^{-}\pi^{+}$ p \overline{B}^{0} \overline{B}^{0} \overline{B}^{0} \overline{B}^{0} \overline{B}^{0} \overline{B}^{0} \overline{B}^{0} \overline{B}^{0} $\overline{B}^{-}\overline{D}^{+}$ $\overline{B}^{-}\overline{D}^{+}$ $\overline{B}^{-}\overline{D}^{+}$ $\overline{B}^{-}\overline{D}^{+}\overline{C}$

Reduce bkg from isolation and particle ID.
Residual bkg knowledge via data-driven studies!

Challenges at LHC: Which bkgs for hadronic τ ?

- Reduce prompt bkg where τ^- vertex downstream of B.
- Residual bkg knowledge via data-driven studies!

Challenges at LHC: Signal & bkg discrimination

[Phys. Rev. D 98 (2018) 032004]

[Nature Phys. 11 (2015) 743-747]

No peaks, continuum distributions with missing neutrinos! 16

Challenges at LHC: Signal & bkg discrimination

 $b \rightarrow cl\nu$; light leptons

 $b \rightarrow c \tau \nu$; Muonic τ

 $b \rightarrow c \tau \nu$; *Hadronic* τ

Analysis covered

$D^* \text{ polarisation in } B \to D^* \tau \nu$ $Angular \text{ coefficients with } B \to D^* \tau \nu$ $Wilson \text{ coefficients with } B \to D^* \tau \nu$ $CP\text{-odd observables with } B \to D^* \mu \nu$ $Angular \text{ analysis of } \Lambda_{\rm b} \to \Lambda_{\rm c} \mu \nu$

$$D^*$$
 polarization in $\overline{B}^0 \to D^{*+} \tau^- \overline{v}_l \stackrel{[LHCb-PAPER-2023-020]}{(Accepted by PRD)}$

➤Use Run 1 (3 fb⁻¹) and partial Run 2 (2 fb⁻¹).
 ➤NP can strongly affect F_L^{D*}(q²) even if LFU ratios align with SM predictions.

$$\frac{d^2\Gamma}{dq^2d\cos\theta_D} = \frac{a_{\theta_D}(q^2) + c_{\theta_D}(q^2)\cos^2\theta_D}{dq^2d\cos\theta_D}$$

$$F_L^{D^*}(q^2) = \frac{a_{\theta_D}(q^2) + c_{\theta_D}(q^2)}{3a_{\theta_D}(q^2) + c_{\theta_D}(q^2)}$$

 $a_{\theta_D} \propto N_{unpolarised}$

$$c_{\theta_D} \propto N_{polarised}$$

Fit for $F_{L}^{D^*}$

- Measure $F_L^{D^*}$ in two q^2 bins: $\leq 7 \ GeV^2$.
- ⇒ Data-driven correction to the $\cos(\theta_D)$ for double charm $(\overline{B}^0 \to D^{*+}D (\to 3\pi^{\pm}) X)$.
- →4D template fit to q^2 , cos(θ_D), anti- D_s^+ BDT output and τ lifetime.

 $F_{L}^{D^{*}}$ results

$q^2 < 7 { m GeV}^2 / c^4$:	$0.51\pm0.07(\mathit{stat})\pm0.03(\mathit{syst})$
$q^2 > 7 { m GeV^2}/c^4$:	$0.35\pm0.08(\mathit{stat})\pm0.02(\mathit{syst})$
q^2 whole range :	$0.43\pm0.06(\textit{stat})\pm0.03(\textit{syst})$

→ Compatible with both SM and previous Belle measurement

➤Simulation sample size and modelling signal and bkg.

Angular coefficients in $B \rightarrow D^* l \nu$

Fit for 12 angular coefficients which are model-independent and integrated over q^2

Ongoing analysis with $B \to D^* \mu(e) \nu$ (to be published next year) and plans with $B \to D^* \tau \nu$!

Wilson coefficients in $B \rightarrow D^* l \nu$

- Another model-independent approach is to fit for WC directly.
- Template fit to 5D distributions (3 angles, dilepton spectrum and missing mass).
- Simulations are weighted to NP scenario at each minimisation step using <u>HAMMER</u>.
- Hadronic form factor parameters also fitted simultaneously in three different parametrisations.

Ongoing analysis with $B \rightarrow D^* \mu \nu$ (to be published next year) and plans with $B \rightarrow D^* \tau \nu$!

CP-odd observables in $B^0 \rightarrow D^{*-}\mu\nu$ [D London et al]

$$egin{aligned} P_{ ext{tot}}(\Omega) &= & P_{ ext{even}}\left(\Omega
ight) + & P_{ ext{odd}}\left(\Omega
ight) + & \Omega = (q^2, heta_D, heta_\ell, \chi) \end{aligned}$$

Amplitude term	Coupling	Angular function
$\operatorname{Im}(\mathcal{A}_{\perp}\mathcal{A}_{0}^{*})$	$\mathrm{Im}[(1+g_L+g_R)(1+g_L-g_R)^*]$	$-\sqrt{2}\sin 2 heta_\ell\sin 2 heta_D\sin\chi$
${ m Im}({\cal A}_{\parallel}{\cal A}_{\perp}^{*})$	$\mathrm{Im}[(1+g_L-g_R)(1+g_L+g_R)^*]$	$2\sin^2 heta_\ell\sin^2 heta_D\sin2\chi$
$\operatorname{Im}(\mathcal{A}_{SP}\mathcal{A}^*_{\perp,T})$	${ m Im}(g_Pg_T^*)$	$-8\sqrt{2}\sin heta_\ell\sin2 heta_D\sin\chi$

$Im(A_iA_j^*)$ non-zero when:

- Rel. strong phase only \rightarrow fake CPV ($\equiv 0$ in both SM and NP)
- Rel. weak phase only \rightarrow true CPV ($\equiv 0$ in SM but $\neq 0$ in NP).

CP-odd sensitivity in $B^0 \rightarrow D^{*-}\mu\nu$

[<u>A Poluektov and Vlad Dedu</u> and Vlad's <u>thesis</u>]

CP asymmetries:					
$\mathrm{Im}(\mathrm{g_R}) = (X.XX \pm 0.51~(stat.) \pm 0.58~(sys)$	/st.))%,				
$\mathrm{Im}(\mathrm{g_Pg_T^*}) = (X.XX \pm 0.13 \; (stat.) \pm 0.09 \; (sys)$	/st.))%.				

Central values are blinded.

	Assigned systematic	$\Delta \operatorname{Im}(g_R)$	$\Delta \operatorname{Im}(g_P g_T^*)$
	Misid	$0.85 imes10^{-3}$	$2.45 imes10^{-4}$
%	Fake <i>D</i> * comb	$0.40 imes10^{-3}$	$0.70 imes10^{-4}$
	True D* comb	$1.45 imes10^{-3}$	$1.98 imes10^{-4}$
	$T_y 2 \mu m$ misalignment	$4.16 imes 10^{-3}$	$4.33 imes 10^{-4}$
70.	Control sample	$2.78 imes 10^{-3}$	$6.12 imes10^{-4}$
	Total	$5.82 imes10^{-3}$	$0.92 imes10^{-3}$

Dominant syst due to detector misalignments.

Ongoing analysis planned to be published next year!

b-baryons

▶ 57k A_b's per sec at LHCb in Run 3 @ peak luminosity!
 ▶ Different spin structure: Sensitive to different Lorentz operators compared to pseudo scalar decays.

Sensitivity on WC with $\Lambda_h^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu$

[JHEP 12 (2019) 148]

Model efficiency and resolution on q^2 and angular observable explicitly and publish data differential distributions.

Planned to be published next year!

Summary and conclusions

- Presented the EFT framework in $b \rightarrow c \ l \ v$ decays.
- Presented the various challenged related to these measurements.
- Discussed recently published result on D^* polarisation in $B \rightarrow D^* \tau \nu$.
- Angular analysis of light leptons to come soon.
- Angular analysis with τ leptons are ongoing.
- Many other analysis with $b \rightarrow u \, l \, v$ ongoing but not discussed here.
- Exciting new precision tests with SL decays ahead!

Summary and conclusions

Competing facilities

Electron-positron colliders.

 $> O(10^9) B^{0/+}$ mesons produced.

- ≻b-mesons produced with **fixed CoM**.
- **B** rest frame reconstructed with high precision even with missing neutrinos.

Challenges at LHC: Large simulation samples

Limited simulation sample size often form dominant systematic. But why?

> Data:

- In Run 3, a signal event $(B \rightarrow D^* \tau \nu)$ occurs every 1.7 ×10⁷ bunch crossings.
- These many bunch crossings occur at LHC every **0.6 seconds**.
- > MC: Compare this to time taken to simulate a signal event $\sim 1 2$ min.
- > Need fast simulation techniques!

E.g. Tracker only MC

Turn off parts of the detector response (shower development, photon propagation in RICH).

Speed up by factor 8, disk space down by 40%

Contraints on $b \rightarrow c \tau v$

Figure 3: Allowed regions for all possible combinations of two Wilson coefficients for different scenarios: Blue areas (lighter 95% and darker 68% CL) show the minima without $F_L^{D^*}$ and with $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) \leq 30\%$. The yellow lines display how the 95% CL bounds change when $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) \leq 10\%$. The dashed lines show the effect of adding the observable $F_L^{D^*}$ for both $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) \leq 30\%$ (purple) and for $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) \leq 10\%$ (orange).

Triple products (TP) in $B^0 \rightarrow D^{*-}\mu\nu$

[<u>A Poluektov and Vlad Dedu</u>]

Extract the two angular functions (
$$P_{odd}^{(1)}$$
 and $P_{odd}^{(2)}$) from total PDF

 $\Omega = (q^2, \theta_D, \theta_\ell, \chi)$

Unbinned true observables

 $P_{\mathrm{tot}}(\Omega) = P_{\mathrm{even}}(\Omega) + P_{\mathrm{odd}}(\Omega)$

 $P_{\rm odd}(\Omega) = P_{\rm odd}^{(1)} \sin \chi + P_{\rm odd}^{(2)} \sin 2\chi$

Binned reconstructed observables

$$P_{\text{odd}}^{(1)} = \frac{1}{\pi} \int_{-\pi}^{\pi} P_{\text{tot}}(\Omega) \sin \chi d\chi \qquad \qquad A_i^{(1)} = \frac{N_{\text{bins}}}{N_{\text{signal}}} \sum_{n=1}^{N_i} \sin \chi_n \simeq \text{Im}(g_{\text{R}}) A_{RH,i}^{(1)} + \text{Im}(g_{\text{P}}g_{\text{T}}^*) A_{PT,i}^{(1)}$$

$$P_{\text{odd}}^{(2)} = \frac{1}{\pi} \int_{-\pi}^{\pi} P_{\text{tot}}(\Omega) \sin 2\chi d\chi \qquad \qquad A_i^{(2)} = \frac{N_{\text{bins}}}{N_{\text{signal}}} \sum_{n=1}^{N_i} \sin 2\chi_n \simeq \text{Im}(g_{\text{R}}) A_{RH,i}^{(2)}$$

Sum all N_i events in i^{th} bin of $[q^2, \cos(\theta_D), \cos(\theta_l)]$

TP: Fit and systematics

[A Poluektov and Vlad Dedu]

- Perform χ^2 fit considering correlation b/w $\sin(\chi)$ and $\sin(2\chi)$.
- Signal and bkg discrimination from 3D fit: q^2, m_{miss}^2 and E_{μ}^* .

≻Systematics:

- CP asymmetry: Non-physics bkg.
- Instrumental effects (e.g., tracking system misalignment)
- Non-uniform reconstruction efficiency.

$$\chi^2_{\rm corr} = \sum_i \sum_{a,b=1,2} \Delta A_i^{(a)} (\Sigma_i^{-1})^{(ab)} \Delta A_i^{(b)}$$

Misalignment of velo modules \rightarrow Bias in vertex position \rightarrow Bias in sin(χ)