

EFT in charged current B decays at LHCb

Abhijit Mathad, CERN

On behalf of LHCb collaboration 8th General Meeting of LHC EFT WG Geneva, Switzerland 1

Paradise for SM precision

T_{ree}

Charged current: $BF \sim$ few %. **Probing indirectly energy regions ~ 10 TeV.**

Trouble in paradise

Charged current: $BF \sim few \%$. **Probing indirectly energy regions ~ 10 TeV.**

An island full of trouble…

Trouble in paradise

4

Trouble involving 3rd gen leptons

LFU trouble (exp): \sim 3 σ tension

NP? Can indep. measurements beyond simple 3

All good with the lighter lepton

Long standing tension \sim 3 σ *A_{FR}Vs*

Differ

At what level can New Physics (NP) affect the inter

Effective Hamiltonian $b \rightarrow c l \nu$

$$
\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[(1 + C_{V_L}) \mathcal{O}_{C_{V_L}} + C_{V_R} \mathcal{O}_{C_{V_R}} + C_{S_L} \mathcal{O}_{C_{S_L}} + C_{S_R} \mathcal{O}_{C_{S_R}} + C_{T_L} \mathcal{O}_{C_{T_L}} \right] + h.c.
$$
\n
$$
* \text{Assuming left-handed } v. \text{ Five more for RH } v
$$
\n
$$
\text{SM vector left-handed } \mathcal{O}_{C_{V_L}} = \bar{c}_L \gamma^\mu b_L \bar{\ell}_L \gamma_\mu \nu_L,
$$
\n
$$
\text{NP Vector right-handed } \mathcal{O}_{C_{S_L}} = \bar{c}_R \gamma^\mu b_R \bar{\ell}_L \gamma_\mu \nu_L,
$$
\n
$$
\text{NP Scalar left-handed } \mathcal{O}_{C_{S_L}} = \bar{c}_R b_L \bar{\ell}_R \nu_L,
$$
\n
$$
\text{NP Scalar right-handed } \mathcal{O}_{C_{S_R}} = \bar{c}_L b_R \bar{\ell}_R \nu_L,
$$
\n
$$
\text{NP Tensor left-handed } \mathcal{O}_{C_{T_L}} = \bar{c}_R \sigma^{\mu \nu} b_L \bar{\ell}_R \sigma_{\mu \nu} \nu_L
$$
\n
$$
\beta \left(\frac{\sigma_{V_{V_L}}}{\sigma_{V_L}} \right)
$$

Need to disentangle short distance (WCs) from long distance (hadronic form factor)!

What New Physics models?

Current bounds from gl

Loose bounds on NP! NP can affect l

Challenges at LHC

Reconstructing B rest frame with missing neutrinos

Degradation in resolution

Model independence

Large calibrated simulation samples

Signal & bkg discremination

Large varied bkg knowledge required

Challenges at LHC: B rest frame

 $BF(\tau \rightarrow \mu$

[Phys. Rev. Let

B mom. reconstructed with **quadratic ambiguity** B mom. reconstructed with **quadratic ambiguity**

B mom. reconstru **quadratic ambiguits**

> **Use MI** regression **the ambiguities**

Challenges at LHC: Resolution

Muonic tau: Large yield but worse resolution.

Hadronic tau: Good resolution lower reco. efficiency

Challenges at LHC: Large back

[[]Phys. Rev. Lett. 131 (2023) 111802]

Challenges at LHC: Which bkgs for muonic τ ?

MisID bkg: $\overline{B} \to D^{(*)} \pi^-$ with $\pi^- \to \mu^-$ **PV** h^- where $h^- \in [\pi^-, K^-]$

 \triangleright Reduce bkg from isolation and particle ID. Ø Residual bkg knowledge via data-driven studies!

Challenges at LHC: Which bkgs for hadronic τ ?

- \triangleright Reduce prompt bkg where τ^- vertex downstream of B.
- Ø Residual bkg knowledge via data-driven studies!

Challenges at LHC: Signal $&$ bkg

[Phys. Rev. D 98 (2018) 032004]

4000 Candidates / (40 $MeV/c²$) 3000 2000 1000 $^{0}_{400}$

 $\overline{\text{No}}$

Challenges at LHC: Signal & bkg discrimination

 $\bm{b} \rightarrow \bm{c}$ lv; light leptons $\bm{b} \rightarrow \bm{c} \bm{\tau}$ v; Muonic $\bm{\tau}$ $\bm{b} \rightarrow \bm{c} \bm{\tau}$ v; Hadronic $\bm{\tau}$

Analysis covered

\triangleright *D***^{*}** polarisation in $B \to D^* \tau \nu$ \triangleright Angular coefficients with $B \to D^* \tau \nu$ \triangleright Wilson coefficients with $B \to D^* \tau \nu$ \triangleright CP-odd observables with $B \to D^* \mu \nu$ \triangleright Angular analysis of $\Lambda_h \to \Lambda_c \mu \nu$

D^* polarization in $\overline{B}{}^0 \rightarrow I$

 \blacktriangleright Use Run 1 (3 fb^{-1}) and partial Run 2 (2 fb^{-1}).

 \triangleright NP can strongly affect F_L^L $L^{D^*}(q^2)$ even if LFU ratios align with SM predictions.

 $\frac{d^2\Gamma}{dq^2d\cos\theta_D}=a_{\theta_D}(q^2)+c_{\theta_D}(q^2)\cos^2\theta_D$

$$
F_L^{D^*}(q^2) = \frac{a_{\theta_D}(q^2) + c_{\theta_D}(q^2)}{3a_{\theta_D}(q^2) + c_{\theta_D}(q^2)}
$$

 $a_{\theta_D} \propto N_{unpolarised}$ c_{θ_D}

 $c_{\theta_D} \propto N_{polarised}$

HQL 2023

上

\$∗

 $\mathbf{0}$

 $\mathbf{0}$

 $\boldsymbol{0}$

 $\mathbf{0}$

 $\mathbf{0}$

 F^D_\perp 0.

Fit for F_L^L D^*

- \triangleright Measure F_L^L L^{D^*} in two q^2 bins: ≶ $7 \ GeV^2$.
- \triangleright Data-driven correction to the cos(θ_{D}) for double charm ($\overline{B}^0 \rightarrow D^{*+}D$ (\rightarrow $3\pi^{\pm}$) X).
- \triangleright 4D template fit to q^2 , $\cos(\theta_D)$, anti- D_s^+ BDT output and τ lifetime.

F_L^I D^* results

Angular coefficients in \bm{B}

Fit for 12 angular coefficients which are model-independent and integrated over 9.1 and integrated ove

Ongoing analysis with $B \to D^* \mu(e) \nu$ (to be published next year)

Wilson coefficients in $B \cdot$

- \triangleright Another model-independent approach is to fit for WC directly.
- \triangleright Template fit to 5D distributions (3) angles, dilepton spectrum and missing mass).
- \triangleright Simulations are weighted to NP scenario at each minimisation step using HAMMER.
- \triangleright Hadronic form factor parameters also fitted simultaneously in three different parametrisations.

Ongoing analysis with $B \to D^* \mu \nu$ (to be published next year)

CP -odd observables in B^0

$$
P_{\text{tot}}(\Omega) = P_{\text{even}}(\Omega) + P_{\text{odd}}(\Omega)
$$

\n
$$
P_{\text{odd}}(\Omega) = P_{\text{odd}}^{(1)} \sin \chi + P_{\text{odd}}^{(2)} \sin 2\chi
$$

\n
$$
\Omega = (q^2, \theta_D, \theta_\ell,
$$

 $Im(A_iA_j^*)$ non-zero when:

- Rel. strong phase only \rightarrow fake CPV (\equiv 0 in both SM and NP)
- **Rel.** weak phase only \rightarrow true CPV (\equiv 0 in SM but \neq 0 in NP

CP-odd sensitivity in B^0

[A Poluektov and Vlad Dedu and Vla

CP asymmetries:

 $\text{Im}(\text{g}_{\text{R}}) = (X.XX \pm 0.51 \text{ (stat.)} \pm 0.58 \text{ (syst.)})\%,$ $Im(g_Pg_T^*) = (X.XX \pm 0.13 \text{ (stat.)} \pm 0.09 \text{ (syst.)})\%.$

Misid Fake D^* comb True D^* comb T_{y} 2 µm misalign

Assigned system:

Control sample **Total**

Central values are blinded.

Dominant syst

Ongoing analysis planned to be publ

b-baryons

 \triangleright 57k Λ_h 's per sec at LHCb in Run 3 @ peak luminosity! Ø Different **spin structure**: Sensitive to different Lorentz operators compared to pseudo scalar decays.

Sensitivity on WC with Λ ¹ $\frac{1}{2}$

Summary and conclusions

- Presented the EFT framework in $b \to c l \nu$ decays.
- Presented the various challenged related to these measurements.
- Discussed recently published result on D^* polarisation in $B \to D^* \tau \nu$.
- Angular analysis of light leptons to come soon.
- Angular analysis with τ leptons are ongoing.
- Many other analysis with $b \to u \, l \, v$ ongoing but not discussed here.
- **Exciting new precision tests with SL decays ahead!**

Summary and conclusions

Competing facilities

Ø**Electron-positron** colliders. $\geq O(10^9) B^{0/+}$ mesons produced. Øb-mesons produced with **fixed CoM.**

Ø**B rest frame reconstructed with high precision** even with missing neutrinos.

Challenges at LHC: Large simulation samples

 \triangleright Limited simulation sample size often form dominant systematic. **But why?**

Ø **Data:**

- o In Run 3, a signal event $(B \to D^* \tau \nu)$ occurs every 1.7×10^7 bunch crossings.
- o These many bunch crossings occur at LHC every **0.6 seconds**.
- Ø **MC:** Compare this to time taken to simulate a signal event \sim 1 – 2 min.
- Ø **Need fast simulation techniques!**

E.g. Tracker only MC

Turn off parts of the detector response (shower development, photon propagation in RICH).

Speed up by factor 8, disk space down by 40%

Contraints on $b \to c\tau\nu$

Figure 3: Allowed regions for all possible combinations of two Wilson coefficients for different scenarios: Blue areas (lighter 95% and darker 68% CL) show the minima without $F_L^{D^*}$ and with $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) \leq 30\%$. The yellow lines display how the 95% CL bounds change when $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) \leq 10\%$. The dashed lines show the effect of adding the observable $F_L^{D^*}$ for both $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) \leq 30\%$ (purple) and for $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau})$ $\tau \bar{\nu}_{\tau}$) $\leq 10\%$ (orange).

Triple products (TP) in B^0

$$
\begin{aligned} P_{\text{tot}}(\Omega) &= \left. P_{\text{even}}\left(\Omega \right) + \left. P_{\text{odd}}\left(\Omega \right) \right. \right. \\ P_{\text{odd}}(\Omega) &= P_{\text{odd}}^{(1)} \sin \chi + P_{\text{odd}}^{(2)} \sin 2\chi \end{aligned} \qquad \Omega = (q^2, \theta_D,
$$

Extract the two angular functions $(P_{odd}^{(1)}$ and

 \rightarrow

Unbinned true observables Binned Binned

$$
P_{\text{odd}}^{(1)} = \frac{1}{\pi} \int_{-\pi}^{\pi} P_{\text{tot}}(\Omega) \sin \chi d\chi
$$

$$
P_{\text{odd}}^{(2)} = \frac{1}{\pi} \int_{-\pi}^{\pi} P_{\text{tot}}(\Omega) \sin 2\chi d\chi
$$

 \overline{M} .

$$
A_i^{(1)} = \frac{N_{\text{bins}}}{N_{\text{signal}}} \sum_{n=1}^{N_i} \sin \lambda_i^{(2)} = \frac{N_{\text{bins}}}{N_{\text{signal}}} \sum_{n=1}^{N_i} \sin \lambda_i^{(2)}
$$

Sum all N_i events in i^t t

TP: Fit and systema

- \blacktriangleright Perform χ^2 fit considering correlation b/w $sin(\chi)$ and $sin(2\chi)$.
- ØSignal and bkg discrimination from 3D fit: q^2 , m^2_{miss} and E^*_{μ} .
- ØSystematics:
	- CP asymmetry: Non-physics bkg.
	- Instrumental effects (e.g., tracking system misalignment)
	- Non-uniform reconstruction efficiency.

Misal $\overline{\mathbf{V}}$