EFT Highlights from CMS

8th General Meeting of the LHC EFT Working Group

Fabian Stäger on behalf of the CMS Collaboration

 $2 \ {\rm December} \ 2024$

Analyses covered in this talk

Differential Higgs Combination

• CMS-PAS-HIG-23-013: «Combination and interpretation of fiducial differential Higgs boson production cross sections at $\sqrt{s} = 13$ TeV»

Combination across multiple sectors

• CMS-PAS-SMP-24-003: «Combined effective field theory interpretation of Higgs boson, electroweak vector boson, top quark, and multi-jet measurements»

Differential Higgs Combination

CMS-PAS-HIG-23-013: «Combination and interpretation of fiducial differential Higgs boson production cross sections at $\sqrt{s} = 13$ TeV»

Differential Higgs combination

- Combination of fiducial differential Higgs measurements using the H $\rightarrow \gamma \gamma$, ZZ, WW, $\tau \tau$ channels
- 31 dim-6 operators considered (CP-even and CP-odd)
- 1-dimensional scans
- 2-d scans of CP-even and CP-odd pairs

Differential Higgs combination

- Combination of fiducial differential Higgs measurements using the H $\rightarrow \gamma \gamma$, ZZ, WW, $\tau \tau$ channels
- 31 dim-6 operators considered (CP-even and CP-odd)
- 1-dimensional scans
- 2-d scans of CP-even and CP-odd pairs

Differential Higgs combination

- Combination of fiducial differential Higgs measurements using the H $\rightarrow \gamma \gamma$, ZZ, WW, $\tau \tau$ channels
- 31 dim-6 operators considered (CP-even and CP-odd)
- 1-dimensional scans
- 2-d scans of CP-even and CP-odd pairs

Principal Component Analysis

- The available data do not contain enough information to constrain all Wilson coefficients in a simultaneous fit; unconstrained degrees of freedom (flat directions in the likelihood)
- Principal component analysis (PCA) is a useful tool to identify linear combinations of WCs that can be constrained:
 - Obtain the Hessian matrix of the likelihood parametrized in terms of the Wilson coefficients,

$$\mathcal{H} \approx C_{\rm SMEFT}^{-1} = P^T C^{-1} P \,,$$

where C is the covariance matrix between the measurement bins, and P is the matrix of the linear SMEFT parameterization

$$P_{ij} = A_j^i, \quad \text{where } (\sigma \times \mathcal{B})_{\text{SMEFT}}^i = (\sigma \times \mathcal{B})_{\text{SM}}^i \left(1 + \sum_j A_j^i c_j + \sum_{j,k} B_{jk}^i c_j c_k\right)$$

- Eigendecomposition of C_{SMEFT}^{-1} yields the eigenvectors (which are used to write linear combinations of Wilson coefficients, EVi), the corresponding eigenvalues λ_i and variances $1/\lambda_i$
- $\circ~$ Linear combinations with small eigenvalue $\lambda_i \to 0$ correspond to flat directions and are fixed to their SM value of 0

Fitting linear combinations

• Set constraints on 10 linear combinations of Wilson coefficients

	CMS Preliminary					138 fb ⁻¹ (13	TeV)
EV0	-0.09	0.80	-0.30		0.26 <mark>-0.44</mark>	0.04 0.02 0.02	$0.02\lambda = 499589.612$
EV1	0.14	0.26	0.94		0.08-0.15	0.01 -0.03	$\lambda = 118374.210$
EV2	-0.97	0.04-0.01-0.03	-0.01 0.04 0.16	0.04 -0.06 0.03	-0.07 0.02	0.14 0.03	$\lambda = 106.874$
EV3	0.10	0.09 0.04	0.01-0.010.03 0.01	0.04 -0.60 -0.03-0.08	-0.05 <mark>-0.14</mark> -0.01 0.10	0.76 0.01	$\lambda = 8.133$
EV4	0.07	-0.41 0.12	-0.01 <mark>-0.18</mark> 0.41	0.04 <mark>-0.52</mark> 0.37	-0.10 <mark>0.16</mark> -0.40	0.020.100.01-0.01	$\lambda = 2.133$
EV5	-0.12	-0.17-0.07 0.01	0.01 0.04 -0.14	0.10 <mark>-0.71</mark> 0.18 0.28	-0.09 <mark>0.04</mark> -0.10 <mark>-0.24</mark>	-0.45-0.10 0.03	$\lambda = 0.535$
EV6		-0.14-0.08 0.01	-0.06 <mark>0.05</mark> -0.15	<mark>-0.87</mark> 0.05 0.19 0.18 -0.02-0	.01 -0.14 <mark>0.17</mark> -0.04-0.13	0.18-0.05-0.02	$\lambda = 0.096$
EV7	-0.02	-0.20-0.18-0.02	-0.28 <mark>0.07</mark> -0.100.02	0.33 0.07 0.11 0.05	0.10 <mark>0.76</mark> 0.12 -0.14	0.26 0.09 -0.04	$\lambda = 0.039$
EV8	0.03	-0.18-0.03 <mark>0.05</mark>	0.39 0.08 <mark>-0.27</mark>	0.31 0.32 0.36 0.32 0.	04 -0.12-0.25-0.18-0.23	0.02 0.28 -0.15 0.18	$\lambda = 0.021$
EV9	-0.01 0.02 -0.02	0.03-0.05-0.02	0.80 <mark>-0.01</mark> 0.06	-0.12-0.11-0.08-0.030.02-0	.03 0.45 0.30 0.09 0.03	-0.01-0.02 <mark>0.04</mark> -0.09	$\lambda = 0.006$
	Re(c _b e) Im(c _b H) Re(c _b H) Im(c _b W) Re(c _b W) Im(c _b H)	Re(c _{eH}) c _{HB} c _{Hbox}	19 년 8 년 19 년 8 년	드북 호북 드로 호문 드북 후	CHW CHW CHWB CHWB	Re(c _{td}) Re(c _{td}) Re(c _{ttt}) Re(c _{ttt})	MO

4

 $2 \ {\rm December} \ 2024$

Combination across multiple sectors

CMS-PAS-SMP-24-003: «Combined effective field theory interpretation of Higgs boson, electroweak vector boson, top quark, and multi-jet measurements»

Inputs to the combination

- Combined SMEFT interpretation of data from four sectors of the SM (Higgs, Top, Electroweak, QCD): Seven CMS measurements + EWPO from LEP and SLC
- Inputs chosen to provide sensitivity to broad set of dim-6 SMEFT operators (64 in total), negligible overlap in event selections, small backgrounds (or estimated from data)

Analysis	Type of measurement	Observables used	Experimental likelihood
$ m H ightarrow \gamma \gamma$	Diff. cross sections	STXS bins [41]	\checkmark
$W\gamma$	Fid. diff. cross sections	$p_{\mathrm{T}}^{\gamma} imes oldsymbol{\phi}_{f} $	\checkmark
WW	Fid. diff. cross sections	$m_{\ell\ell}$	\checkmark
Z ightarrow u u	Fid. diff. cross sections	p_{T}^{Z}	\checkmark
tī	Fid. diff. cross sections	$M_{ m tar t}$	×
EWPO	Pseudo-observables	$\Gamma_{Z,} \sigma_{had,}^{0} R_{\ell}, R_{c}, R_{b}, A_{FB}^{0,\ell},$	×
		$A_{FB}^{0,c}, A_{FB}^{0,b}$	
Inclusive jet	Fid. diff. cross sections	$p_{ m T}^{ m jet} imes y^{ m jet} $	×
tĪX	Direct EFT	Yields in regions of interest	\checkmark

Inputs to the combination

- Combined SMEFT interpretation of data from four sectors of the SM (Higgs, Top, Electroweak, QCD): Seven CMS measurements + EWPO from LEP and SLC
- Inputs chosen to provide sensitivity to broad set of dim-6 SMEFT operators (64 in total), negligible overlap in event selections, small backgrounds (or estimated from data)
- Which input channel is sensitive to which operators?

- plot shows diagonal entries of the Hessian matrix, $H_{jk} = \frac{\partial^2 \ln \mathcal{L}}{\partial c_j \partial c_k}$
 - $(H_{jj}^p)^{-1/2}$: estimate of half the expected 68% confidence interval on Wilson coefficient c_j/Λ^2 , evaluated with input channel p)

$2 \ {\rm December} \ 2024$

SMEFT parameterization

• Scattering cross section is proportional to matrix element squared

$$\sigma = |\mathcal{M}_{\rm SM} + \sum_j \frac{c_j}{\Lambda^2} \mathcal{M}_j|^2 = |\mathcal{M}_{\rm SM}|^2 + 2\sum_j \frac{c_j}{\Lambda^2} \operatorname{Re}\left(\mathcal{M}_j \mathcal{M}_{\rm SM}^*\right) + \sum_{j,k} \frac{c_j c_k}{\Lambda^4} \operatorname{Re}\left(\mathcal{M}_j \mathcal{M}_k^*\right)$$

• This means that cross section of process p in kinematic bin i can be written as

$$\sigma_{\rm SMEFT}^{i,p} = \sigma_{\rm SM}^{i,p} + \sigma_{\rm int.}^{i,p}(\vec{c}) + \sigma_{\rm BSM}^{i,p}(\vec{c}) = \sigma_{\rm SM}^{i,p} \left(1 + \sum_j A_j^{i,p} \frac{c_j}{\Lambda^2} + \sum_{j,k} B_{jk}^{i,p} \frac{c_j c_k}{\Lambda^4}\right)$$

- Majority of results we report use parameterizations truncated at $\mathcal{O}(c/\Lambda^2)$ (linear terms)
- A^{i,p}_j, B^{i,p}_{jk} computed using MG5_aMC@NLO+Pythia+SMEFTsim3 (SMEFT@NLO for gg → H, ZH)
 SMEFT modifications of masses and decay widths also taken into account
- For $H \rightarrow \gamma \gamma$ decay and EWPO, analytic calculations are used

Modifications to input analyses and likelihood model

Likelihood model:

• Combined likelihood model:

$$\mathcal{L}\left(\text{data}\,;\,\vec{c},\vec{\nu}\right) = \mathcal{L}^{\text{expt}}\left(\vec{c},\vec{\nu}\right)\mathcal{L}^{\text{simpl}}\left(\vec{c}\right)$$

• «experimental likelihood»:

$$\mathcal{L}^{\exp}(\vec{c}, \vec{\nu}) = \prod_{i} \operatorname{Poisson}\left(n_{i} \mid \sum_{j} \mu^{\prime j}(\vec{c}) s_{i}^{j}(\vec{\nu}) + b_{i}(\vec{\nu})\right) \prod_{k} p_{k}\left(y_{k} \mid \nu_{k}\right)$$

- covers the H $\rightarrow \gamma\gamma$, W γ , WW, and Z $\rightarrow \nu\nu$ measurements
- in the tTX measurement, instead of $\sum_{i} \mu^{\prime j}(\vec{c}) s_{i}^{j}(\vec{\nu})$, signal yield takes the form $\sum_{i} s_{i}^{j}(\vec{\nu},\vec{c})$
- «simplified likelihood»:

$$\mathcal{L}^{\text{simpl}}(\vec{c}) = \frac{\exp\left(-\frac{1}{2}\left(\vec{\mu}(\vec{c}) - \hat{\vec{\mu}}\right)^T V^{-1}\left(\vec{\mu}(\vec{c}) - \hat{\vec{\mu}}\right)\right)}{\sqrt{(2\pi)^m \det(V)}}$$

 $\circ~$ covers the EWPO, $t\bar{t},$ and inclusive jet measurements

2 December 2024

Modifications to input analyses and likelihood model

Likelihood model:

• Combined likelihood model: $\mathcal{L}(\text{data}; \vec{c}, \vec{\nu}) = \mathcal{L}^{\text{expt}}(\vec{c}, \vec{\nu}) \mathcal{L}^{\text{simpl}}(\vec{c})$

•
$$\mathcal{L}^{\text{expt}}(\vec{c}, \vec{\nu}) = \prod_{i} \text{Poisson}(n_i \mid \sum_{j} \mu'^j(\vec{c}) s_i^j(\vec{\nu}) + b_i(\vec{\nu})) \prod_{k} p_k(y_k \mid \nu_k)$$

• $\mathcal{L}^{\text{simpl}}(\vec{c}) = \exp\left(-\frac{1}{2}\left(\vec{\mu}(\vec{c}) - \hat{\vec{\mu}}\right)^T V^{-1}\left(\vec{\mu}(\vec{c}) - \hat{\vec{\mu}}\right)\right) / \sqrt{(2\pi)^m \det(V)}$ (t \bar{t} , inclusive jet, EWPO)

(H, W γ , WW, Z, t $\bar{t}X$) (t \bar{t} , inclusive jet, EWPO)

Modifications to input measurements:

- SM predictions for inclusive jet measurement rederived with up-to-date PDF set
- For all (CMS) measurements, derived theoretical uncertainties on SM predictions (PDF, factorization and renormalization scale uncertainties)
- PDF and luminosity uncertainties (partially) correlated between the input measurements
- SMEFT parameterizations derived up to $\mathcal{O}(c^2/\Lambda^4)$ in a consistent way for all input measurements
 - $\circ~$ For the «direct» EFT measurement $\ensuremath{\mathrm{t\bar{t}X}}\xspace$
 - $-\,$ basis rotation from dim6top to SMEFT topU31 as implemented in SMEFTsim3
 - $-\,$ added operators that were not considered in original analysis: $\mathcal{Q}_{H\square}$ and 2-heavy-2-light-quark

.

• 22 «flat directions» ($\lambda < 0.04$) fixed to zero

.

.

* Li (n = 0.00)	0.00																						
EV28 ($\lambda^{-1/2} = 1.4$)																		0.2	0.5 0.1 -	0.2.0.1	0.1-0.7	-0.1 -0.2	3-0.2-0.3
V29 ($\lambda^{-1/2} = 1.6$)		-0.3	0.1	0.3	-0.10.1	-0.1				0.2-0.2 0.1 0	1 0.1 -0.20	1 0.4 -0.1	0.2 -0	3-0.10.2 0.1	-0.3 0.1	0.3 0.1							
V30 $(\lambda^{-1/2} = 1.8)$				0.1						0.2-0.2 0.1 0	1	-0.1	-0.2 0.	3 0.5 -0.3-0.7	-0.2	0.2 0	h.1						
V31 $(\lambda^{-1/2} = 2.0)$			-0.2		-0.1	0.1				-0.20.2 -0.1-0	.10.2 -0.40	2 0.7 0.1	-0.10.	3 -0.1-0.1	0.1	-0.1-0.1							
√32 (λ ^{-1/2} = 2.2)				-0.1						0.4-0.50.30.	2	0.1	-0.2-0.2 0.	2 0.1 0.1	0.5 -0.	1-0.2-0.1							
√33 (λ ^{.1/2} = 2.3)																		0.1	-0.1		-0.1	0.6-0.3-0.	30.3 -0.
$\sqrt{34} (\lambda^{-1/2} = 2.5)$		-0.1-0.1 0.1		0.2		-0.1		0.1	-0.9	0.3			0.	1	0.1								
/35 (λ ^{.1/2} = 2.6)	0.1	0.5	0.1	0.6	-0.1-0.1	0.1	1.1	0.1	-0.2	0.1 0.1 -0.1 0.1	0.1 -0.10	1 0.2	-0.1 -0	.2 0.2	-0.2	0.1 0.1 0	1.1						
$/36 (\lambda^{-1/2} = 2.8)$																	0.3	0.1	-0.2	0.1		0.4 0.3 -0.	5 0.6
$/37 (\lambda^{1/2} = 3.1)$		0.1 -0.1	-0.4	-0.1	0.2 0.1	-0.1		U1		0.2-0.2 0.1 0	1	0.1	0.3 0.2 0.	1-0.3-0.6 0.1	-0.3 0.1	-0.1 0	M						
/38 (). ^{-1/2} = 3.4)	0.1	0.2 0.1 -0.5	0.2	0.	1	0.3 0	0.1 0	4 -0.2	-0.2								0.1	0.1	0.1	0.1-0.1	-0.1 0.1	0.3-0.3-0.	3 0.1
/39 (). ^{1/2} = 3.4)	0.1	0.2 -0.4	0.1	0.	.1	0.2 0	0.1 0	.3 -0.1	-0.1								-0.2	-0.1	-0.1-	-0.10.1	0.1-0.2	0.4 0.5 0.4	\$ 0.1 -0.
$/40 (\lambda^{1/2} = 3.5)$		0.1 -0.2 -0.2	0.8 0.1	-0.1		0.1		.1-0.1	-0.1			-0.1-0.1	1-0.1-0.1-0	.10.1 0.4 -0.1	0.1	0.1 0.1 0	11						
$/41 (\lambda^{1/2} = 4.4)$																	0.1		-0.10.4	0.5-0.2	0.6-0.2	0.1 0.1 0.1	1-0.2
$V42 (\lambda^{-1/2} = 4.9)$		0.3-0.1	0.1	0.1	0.2		1 H	0.1				0.2	0.1 0.3	0.10.1	0.410	20.4-0.20	.5						

- Perform PCA to identify 42 linear combinations of Wilson coefficients that can be constrained simultaneously
- 22 «flat directions» $(\lambda < 0.04)$ fixed to zero

- 8 linear combinations constrained by inclusive jet measurement ($Q_{\rm G}, \psi^4$ (4-light-quark) operators)
- 8 by Higgs and electroweak measurements ($Q_W, Q_{HD}, H+V, H+\psi, \psi^4$ (2 ℓ or 4 ℓ) operators) (ascard

10 YOU (P = 1.0)					W11						VIE VIE 011 VII		1913. (1918)		010 010 011	(W18)		
EV31 ($\lambda^{-1/2} = 2.0$)				-0.2		-0.10.1					-0.20.2 -0.1-0.1	0.2 -0.40.2	0.7 0.1	-0.10.3	-0.1-0.1	0.1 -0.1-0.1		
EV32 ($\lambda^{-1/2} = 2.2$)					-0.1						0.4-0.50.30.2		0.1 -0.2	-0.20.2	0.1 0.1	0.5 -0.1-0.2 -0.1		
EV33 ($\lambda^{-1/2} = 2.3$)																0.1 -0.1	-0.1 0	.6 -0.3-0.30.3 -0.6
EV34 ($\lambda^{-1/2} = 2.5$)			-0.1-0.1 0.1		0.2		-0.1	-0.1	-0	.9	0.3			0.1		0.1		
EV35 ($\lambda^{-1/2} = 2.6$)		0.1	0.5	0.1	-0.6	0.1-0.1 0.1		-0.1	-0	.2	0.1 0.1 -0.1 0.1	0.1 -0.10.1	0.2 -0.1	0.2	0.2	-0.2 0.1 0.1 0.1		
EV36 ($\lambda^{-1/2} = 2.8$)																0.3 0.1	0.2 0.1 0	4 0.3 -0.5 0.6
EV37 $(\lambda^{-1/2} = 3.1)$			0.1 -0.1	-0.4	-0.1	0.2 0.1 -0.1		0.1			0.2-0.2 0.1 0.1		0.10.3	0.2 0.1	-0.3-0.6 0.1	-0.3 0.1 -0.1 0.1		
EV38 ($\lambda^{-1/2} = 3.4$)		0.1	0.2 0.1 -0.5	0.2	0.1		0.3 0.1	0.4 -0.2	-0	2						0.1 0.1	0.1 0.1-0.1-0.1 0.1-0	.3-0.3-0.3 0.1
EV39 $(\lambda^{-1/2} = 3.4)$		0.1	0.2 -0.4	0.1	0.1		0.2 0.1	0.3 -0.1	-0	1.1						-0.2 -0.1	-0.1-0.10.1 0.1 -0.20	4 0.5 0.4 0.1 -0.1
EV40 ($\lambda^{-1/2} = 3.5$)			0.1-0.2-0.2	0.8 0.1	-0.1		0.1	0.1 -0.1	-	LI.			-0.1-0.1-0.1	1-0.1-0.1	0.1 0.4 -0.1	0.1 0.1 0.1 0.1		
EV41 ($\lambda^{-1/2} = 4.4$)																0.1 -0.1	0.4 0.5-0.2-0.6-0.20	1 0.1 0.1 0.2
EV42 $(\lambda^{-1/2} = 4.9)$			0.3-0.1	0.1	0.1	0.2		0.1					0.2 0.1	0.3	0.1 0.1	0.4-0.2 0.4-0.2 0.5		
	3.3	9 8 9	2 8 .8 9.	8.8.8.3	, E . E	ž	2080		a#75.7	898	3-828.80	8-0-0		.8-8	57782878	128-292-292-2-2-2-2-2		3-3-3-1-1

- Perform PCA to identify 42 linear combinations of Wilson coefficients that can be constrained simultaneously
- 22 «flat directions» $(\lambda < 0.04)$ fixed to zero

- 8 linear combinations constrained by inclusive jet measurement (Q_G , ψ^4 (4-light-quark) operators)
- 8 by Higgs and electroweak measurements ($Q_W, Q_{HD}, H+V, H+\psi, \psi^4$ (2 ℓ or 4 ℓ) operators) (assessed
- 7 by EWPO (Q_{HD} , Q_{ll} , H+V, H+ ψ operators)

 = 25
 -41-415
 0.2
 -41
 0.1
 0.1
 0.1

 = 25
 -51
 0.1
 0.1
 0.2
 0.1
 0.1

 = 28
 -51
 0.1
 0.1
 0.2
 0.1
 0.1

 = 28
 -51
 0.1
 0.1
 0.2
 0.1
 0.1
 0.2
 0.1
 0.1

 = 28
 -51
 0.1
 0.1
 0.2
 0.1
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.1
 0.1

 = 20
 -0.1
 0.1
 0.1
 0.2
 0.1
 0.1
 0.1
 0.2
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1</

0.20.2 -0.1-0.10.2 -0.40.2 0.7 0.1

-0.1 0.6-0.3-0.30.3 -0.6

- 7 by EWPO (\mathcal{Q}_{HD} , \mathcal{Q}_{II} , H+V, H+ ψ operators)
- 10 by top quark measurements ($Q_{H\Box}$, V+ ψ , H+ ψ , ψ^4 (2- or 4-heavy-quark) operators
- 9 by a mixture
 - o Higgs+Top (EV13, EV35, EV40), multi-jet+Top (EV15, EV19, EV24)
 - o CMS EWK+EWPO (EV18), Higgs+EWK+multi-jet (EV38, EV39) 기정정정 전기가 이 사용 이 사용 이 사용 (EV18), Higgs+EWK+multi-jet (EV38, EV39)

01 06 02 0202 01

Individual constraints on Wilson coefficients

- Setting constraints on 64 individual Wilson coefficients (each obtained by fixing all others to 0)
 - 95% confidence CMS Preliminary 36.3-138 fb⁻¹ (13 TeV) Hybrid fit, 1-by-1 scans intervals range - 68% CI - 95% CI inear+Quadratic Roet fit from around ± 20 to ± 0.003 / N² (TeV⁻²) Breakdown of contributions of each measurement ö p, calculated as $f_j^p = \frac{H_{jj}^p}{H_{jj}^{\text{comb.}}}$ ractional contribution f 0.8 Several operators 0.6 Z→>>> constrained by 04 multiple analyses EWPO 02 incl. iet III ti ¥

Individual constraints on Wilson coefficients

- Several Wilson coefficients receive significant constraints from multiple measurements, e.g.
 - Through combination of $t\bar{t}$ cross section measurements and the $t\bar{t}X$ EFT analysis, we obtain stronger constraints on the 2-heavy-2-light quark operators
 - Combination of $W\gamma$ and $H \rightarrow \gamma\gamma$ yields an improved constraint on c_W with respect to any single-analysis result (linear-only sensitivity ~45% higher than CMS $W\gamma$ result)
 - 2-(light)quark-2-lepton operators constrained by combination of EW vector boson measurements
 - Interplay of Higgs- and Top-sectors $(c_{tG}, c_{tH}, c_{H\square})$
- Comparison of results with linear-only $(\mathcal{O}(c/\Lambda^2))$ and linear+quadratic parameterization $(\mathcal{O}(c^2/\Lambda^4))$ gives an indication of how much the inclusion of orders $1/\Lambda^4$ could change the sensitivity of the results

Lower limits on energy scales of new physics

• Translate constraints on c_j/Λ^2 into 95% CL lower limits on the scale of new physics Λ_j , by setting c_j to specific values (of 0.01, 1 and $(4\pi)^2$)

Constraints on linear combinations of Wilson coefficients

- Setting constraints on 42 linear combinations of Wilson coefficients (each varied simultanoeusly)
- Majority of POI receives significant contributions from multiple channels
- 8 linear combinations constrained by inclusive jet measurement
- 8 by Higgs and electroweak measurements
- 7 by EWPO
- 10 by top quark measurements
- 9 by a mixture

Constraints on linear combinations of Wilson coefficients

- Setting constraints on 42 linear combinations of Wilson coefficients (varied simultanoeusly)
- 95% confidence intervals range from around ± 10 to ± 0.002
- Majority of POI receives significant contributions from multiple channels
 - o 8 linear combinations constrained by inclusive jet measurement
 - 8 by Higgs and electroweak measurements
 - 7 by EWPO
 - 10 by top quark measurements
 - 9 by a mixture
- The p-value for the compatibility with the SM is 1.7%
 - Deviation from SM is mostly driven by inclusive jet measurement
 - $\circ~$ When excluding it from the combination, the p-value is found to be 26%

Summary

- Differential Higgs combination (H → γγ, ZZ, WW, ττ) setting constraints on 28 CP-even and 3 CP-odd dimension-6 operators individually / 10 linear combinations simultaneously
 o no deviations from SM expectation observed
- Combination of measurements from Higgs, Top, Electroweak, and QCD sectors constraining 64 dimension-6 operators individually / 42 linear combination simultaneously
 o some deviation from SM (p-value 1.7%), mostly driven by multijet production
- Developments for future global combinations: Combine and (re-)interpret different types of measurements (differential cross sections and direct EFT measurements) in a consistent way

BACKUP

Linear	expected	observed	Wilson	expected	observed
combination	linear	linear	coefficient	linear	linear
$EV1/\Lambda^2$	[-0.002, 0.002]	[-0.003, 0.002]	$EV2/\Lambda^2$	[-0.003, 0.003]	[-0.006, 0.001]
$EV3/\Lambda^2$	[-0.006, 0.006]	[-0.004, 0.009]	$EV4/\Lambda^2$	[-0.012, 0.013]	[-0.006, 0.020]
$EV5/\Lambda^2$	[-0.014, 0.014]	[-0.018, 0.011]	$EV6/\Lambda^2$	[-0.022, 0.022]	[-0.052, -0.008]
$EV7/\Lambda^2$	[-0.031, 0.031]	[-0.000, 0.062]	$EV8/\Lambda^2$	[-0.032, 0.032]	[-0.040, 0.024]
$EV9/\Lambda^2$	[-0.063, 0.063]	[-0.11, 0.018]	$EV10/\Lambda^2$	[-0.093, 0.093]	[-0.014, 0.17]
$EV11/\Lambda^2$	[-0.094, 0.094]	[-0.030, 0.16]	$EV12/\Lambda^2$	[-0.21, 0.21]	[-0.22, 0.20]
$EV13/\Lambda^2$	[-0.27, 0.25]	[-0.39, 0.16]	$EV14/\Lambda^2$	[-0.29, 0.26]	[-0.16, 0.32]
$EV15/\Lambda^2$	[-0.32, 0.32]	[-0.27, 0.37]	$EV16/\Lambda^2$	[-0.32, 0.33]	[-0.21, 0.46]
$EV17/\Lambda^2$	[-0.51, 0.44]	[-0.33, 0.61]	$EV18/\Lambda^2$	[-0.55, 0.55]	[-0.67, 0.43]
$EV19/\Lambda^2$	[-0.69, 0.69]	[-1.4, 0.033]	$EV20/\Lambda^2$	[-0.78, 1.0]	[-1.4, 0.54]
$EV21/\Lambda^2$	[-0.91, 0.99]	[-1.1, 1.0]	$EV22/\Lambda^2$	[-1.3, 1.1]	[-0.015, 2.2]
$EV23/\Lambda^2$	[-1.3, 1.3]	[0.18, 2.8]	$EV24/\Lambda^2$	[-1.4, 1.4]	[-1.2, 1.6]
$EV25/\Lambda^2$	[-1.5, 1.5]	[-2.6, 0.32]	$EV26/\Lambda^2$	[-1.8, 1.5]	[-2.0, 1.8]
$EV27/\Lambda^2$	[-1.8, 1.9]	[-1.3, 2.5]	$EV28/\Lambda^2$	[-2.7, 2.7]	[-0.60, 4.9]
$EV29/\Lambda^2$	[-3.4, 3.1]	[-4.7, 2.1]	$EV30/\Lambda^2$	[-3.7, 3.3]	[0.97, 9.5]
$EV31/\Lambda^2$	[-4.4, 3.7]	[-4.6, 4.0]	$EV32/\Lambda^2$	[-4.6, 4.1]	[-6.0, 2.9]
$EV33/\Lambda^2$	[-4.6, 4.6]	[1.4, 11]	$EV34/\Lambda^2$	[-5.0, 4.7]	[-4.1, 4.8]
$EV35/\Lambda^2$	[-5.0, 5.1]	[0.48, 12]	$EV36/\Lambda^2$	[-5.5, 5.5]	[-7.8, 3.1]
$EV37/\Lambda^2$	[-6.2, 6.3]	[-9.2, 7.7]	$EV38/\Lambda^2$	[-6.2, 6.3]	[-6.4, 6.2]
$EV39/\Lambda^2$	[-6.4, 6.5]	[-6.2, 6.7]	$EV40/\Lambda^2$	[-7.6, 7.1]	[-6.8, 12]
$EV41/\Lambda^2$	[-8.6, 8.6]	[-4.7, 12]	$EV42/\Lambda^2$	[-9.5,9.6]	[-4.2, 16]

2 December 2024

Wilson	expected	observed	expected	observed
coefficient	linear	linear	linear+quadratic	linear+quadratic
$c_{qq}^{(3,1)} / \Lambda^2$	[-0.003, 0.003]	[-0.003, 0.002]	[-0.003, 0.003]	[-0.003, 0.003]
$c_{\rm HB}/\Lambda^2$	[-0.005, 0.004]	[-0.009, 0.001]	[-0.005, 0.004]	[-0.008, 0.001]
$c_{\rm HG}/\Lambda^2$	[-0.006, 0.006]	[-0.004, 0.008]	[-0.006, 0.006]	[-0.004, 0.008]
$c_{qq}^{(1,1)} / \Lambda^2$	[-0.007, 0.007]	[-0.008, 0.005]	[-0.005, 0.014]	[-0.007, 0.008]
$c_{uu}^{(1)}/\Lambda^2$	[-0.008, 0.008]	[-0.010, 0.005]	[-0.006, 0.012]	[-0.008, 0.007]
$c_{\rm HWB}/\Lambda^2$	[-0.007, 0.008]	[-0.004, 0.012]	[-0.008, 0.008]	[-0.004, 0.011]
$c_{ m Hl}^{(1)}/\Lambda^2$	[-0.009, 0.009]	[-0.006, 0.012]	[-0.009, 0.009]	[-0.006, 0.012]
$c_{qq}^{(1,8)} / \Lambda^2$	[-0.009, 0.009]	[-0.010, 0.008]	[-0.008, 0.010]	[-0.010, 0.009]
$c_{\rm He}^{14}/\Lambda^2$	[-0.013, 0.013]	[-0.023, 0.003]	[-0.013, 0.013]	[-0.023, 0.003]
$c_{ m Hl}^{(3)}/\Lambda^2$	[-0.014, 0.014]	[-0.015, 0.013]	[-0.014, 0.014]	[-0.015, 0.013]
$c_{\rm HW}/\Lambda^2$	[-0.015, 0.013]	[-0.026, 0.003]	[-0.014, 0.014]	[-0.024, 0.003]
$c_{\rm Hg}^{(3)}/\Lambda^2$	[-0.015, 0.015]	[-0.019, 0.012]	[-0.015, 0.015]	[-0.019, 0.012]
$c_{\rm uu}^{(8)} / \Lambda^2$	[-0.022, 0.022]	[-0.029, 0.016]	[-0.019, 0.033]	[-0.024, 0.020]
c'_{11}/Λ^2	[-0.031, 0.031]	[-0.027, 0.036]	[-0.031, 0.031]	[-0.027, 0.036]
$c_{ m ud}^{(1)}/\Lambda^2$	[-0.032, 0.032]	[-0.031, 0.032]	[-0.054, 0.022]	[-0.070, 0.021]
$c_{\rm cm}^{(8)}/\Lambda^2$	[-0.036, 0.036]	[-0.054, 0.018]	[-0.031, 0.044]	[-0.045, 0.020]
$c_{\rm HD}/\Lambda^2$	[-0.037, 0.037]	[-0.085, -0.011]	[-0.037, 0.037]	[-0.086, -0.012]
$c_{\rm HO}^{(3)}/\Lambda^2$	[-0.040, 0.040]	[-0.038, 0.042]	[-0.040, 0.040]	[-0.038, 0.042]
$c_{\rm HO}^{(1)}/\Lambda^2$	[-0.040, 0.040]	[-0.038, 0.042]	[-0.040, 0.040]	[-0.038, 0.042]
$\operatorname{Re}(c_{bH})/\Lambda^2$	[-0.045, 0.050]	[-0.009, 0.090]	[-0.051, 0.046]	[-0.009, 0.077]
$c_{\mathrm{ud}}^{(8)}/\Lambda^2$	[-0.049, 0.049]	[-0.052, 0.046]	[-0.041, 0.075]	[-0.045, 0.16]
$c_{\rm qq}^{(3,8)}/\Lambda^2$	[-0.059, 0.059]	[-0.11,0.012]	[-0.018, 0.025]	[-0.022, 0.025]

2 December 2024

$c_{\rm Hu}/\Lambda^2$	[-0.081, 0.080]	[-0.095, 0.066]	[-0.081, 0.080]	[-0.095, 0.065]
$\text{Re}(c_{\text{tB}})/\Lambda^2$	[-0.089, 0.080]	[-0.16, 0.016]	[-0.085, 0.084]	[-0.15, 0.016]
$c_{\rm dd}^{(1)}/\Lambda^2$	[-0.086, 0.086]	[-0.057, 0.12]	[-0.038, 0.056]	[-0.031, 0.065]
$c_{\rm qd}^{(8)}/\Lambda^2$	[-0.089, 0.089]	[-0.11, 0.073]	[-0.066, 0.14]	[-0.080, 0.17]
$c_{\rm Hg}^{(1)}/\Lambda^2$	[-0.13, 0.13]	[-0.15, 0.11]	[-0.13, 0.12]	[-0.14, 0.10]
$c_{\rm G}/\Lambda^2$	[-0.14, 0.14]	[-0.14, 0.13]	[-0.017, 0.015]	[-0.016, 0.014]
$c_{\rm qt}^{(8)}/\Lambda^2$	[-0.15, 0.15]	[-0.23, 0.076]	[-0.30, 0.12]	[-0.26, 0.066]
$\operatorname{Re}(c_{\mathrm{tW}})/\Lambda^2$	[-0.17, 0.15]	[-0.30, 0.031]	[-0.16, 0.16]	[-0.26, 0.034]
$c_{\rm Hd}/\Lambda^2$	[-0.16, 0.16]	[-0.14, 0.17]	[-0.15, 0.16]	[-0.14, 0.17]
$c_{\rm W}/\Lambda^2$	[-0.16, 0.15]	[-0.30, 0.015]	[-0.061, 0.061]	[-0.065, 0.037]
${\rm Re}(c_{\rm tG})/\Lambda^2$	[-0.17, 0.16]	[-0.27, 0.070]	[-0.15, 0.18]	[-0.19, 0.074]
$c_{ m Qq}^{(1,8)}/\Lambda^2$	[-0.20, 0.20]	[-0.31, 0.084]	[-0.35, 0.14]	[-0.29, 0.075]
$c_{ m dd}^{(8)}/\Lambda^2$	[-0.20, 0.20]	[-0.14, 0.26]	[-0.10, 0.16]	[-0.081, 0.18]
$c_{\rm Hb}/\Lambda^2$	[-0.22, 0.22]	[-0.33, 0.12]	[-0.22, 0.24]	[-0.31, 0.13]
$c_{\mathrm{tu}}^{(8)}/\Lambda^2$	[-0.27, 0.27]	[-0.39, 0.15]	[-0.40, 0.18]	[-0.34, 0.11]
$c_{\mathrm{Qu}}^{(8)}/\Lambda^2$	[-0.30, 0.30]	[-0.44, 0.15]	[-0.42, 0.19]	[-0.34, 0.12]
$c_{ m Qq}^{(3,1)}/\Lambda^2$	[-0.35, 0.35]	[-0.54, 0.15]	[-0.10, 0.084]	[-0.062, 0.049]
$c_{\mathrm{td}}^{(8)}/\Lambda^2$	[-0.47, 0.47]	[-0.67, 0.28]	[-0.51, 0.26]	[-0.41, 0.18]
$c_{\mathrm{Qd}}^{(8)}/\Lambda^2$	[-0.52, 0.52]	[-0.76, 0.28]	[-0.53, 0.28]	[-0.42, 0.19]
$c_{\rm qt}^{(1)}/\Lambda^2$	[-0.65, 0.65]	[-0.99, 0.32]	[-0.10, 0.090]	[-0.078, 0.066]
$c_{Qq}^{(3,8)}/\Lambda^2$	[-0.76, 0.76]	[-1.1, 0.42]	[-0.24, 0.20]	[-0.14, 0.12]

26,0.16] 0,0.093] 086,2.5] 11,0.13] 59,0.067] 18,0.047] ∂1,0.086] 8,0.54] 75,0.075]
0,0.093] 086,2.5] 11,0.13] 69,0.067] 48,0.047] 91,0.086] 8,0.54] 75,0.075]
086, 2.5] 11, 0.13] 69, 0.067] 48, 0.047] 91, 0.086] 8, 0.54] 75, 0.075]
11, 0.13] 69, 0.067] 48, 0.047] 91, 0.086] 8, 0.54] 75, 0.075]
69,0.067] 48,0.047] 91,0.086] 8,0.54] 75,0.075]
48, 0.047] 91, 0.086] 8, 0.54] 75, 0.075]
91, 0.086] 8, 0.54] 75, 0.075]
8,0.54] 75,0.075]
75,0.075]
.9,3.1]
14,0.13]
.3, 1.4]
36,0.36]
0, 1.6]
.8,2.3]
37,0.44]
4, 2.2]
.9,2.4]
.2, 5.8]
.4,4.9]
2 1 5

B7

Modifications to input analyses: Inclusive jets predictions

- Rederived both nominal NNLO QCD predictions and uncertainties with CT18 NNLO PDF set
- PDF uncertainties: 28 eigenvector variations, symmetrized and taken as fully correlated between bins
- Renormalization and factorization scale: correlated between $p_{\rm T}$ bins of a given |y| bin
- Theory statistical: obtained from fastNLO, treated as uncorrelated between bins
- Electroweak corrections and uncertainties from non-perturbative effects taken from HEPData

Electroweak precision observables from LEP & SLC

The measurement of eight pseudo-observables measured at LEP and SLC [35, 36] is incorporated in the interpretation presented here. These observables are the Z boson total width, Γ_Z ; the hadronic pole cross section, σ_{had}^0 , defined as

$$\sigma_{\rm had}^0 = \frac{12\pi}{m_Z^2} \frac{\Gamma_{\rm ee} \Gamma_{\rm had}}{\Gamma_Z^2} \,, \tag{2}$$

where Γ_{ee} is the partial decay width of the Z boson to an electron-positron pair and $\Gamma_{had} = \Gamma_{uu} + \Gamma_{dd} + \Gamma_{cc} + \Gamma_{ss} + \Gamma_{bb}$ is the hadronic Z boson decay width; three ratios of partial decay widths, R_{ℓ} , R_c , R_b , defined as

$$R_{\ell} = rac{\Gamma_{
m had}}{\Gamma_{\ell\ell}}, \quad R_{c,b} = rac{\Gamma_{
m cc,bb}}{\Gamma_{
m had}};$$
 (3)

and three forward-backward asymmetries, $A_{FB}^{0,\ell}$, $A_{FB}^{0,c}$, $A_{FB}^{0,b}$, defined as

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}.\tag{4}$$

In this expression, N_F (N_B) is the number of events where the charged lepton, c quark, or b quark is produced in the direction of the electron beam (anti-electron beam). SMEFT corrections on these pseudo-observables were evaluated analytically in Ref. [36].

2 December 2024

SMEFT parameterization (details on event generation)

$$\sigma_{p,\text{SMEFT}}^{i} = \sigma_{p,\text{SM}}^{i} \left(1 + \sum_{j} A_{p,j}^{i} \frac{c_{j}}{\Lambda^{2}} + \sum_{j,k} B_{p,jk}^{i} \frac{c_{j}c_{k}}{\Lambda^{4}} \right)$$

- $A_{p,j}^i \frac{c_j}{\Lambda^2}$: linear terms or interference terms, from interference of SM and BSM • $B_{p,jk}^i \frac{c_j c_k}{\Lambda^4}$: quadratic terms or cross terms (when $j \neq k$)
- Constants $A_{p,j}^i$, $B_{p,jk}^i$ are computed by generating events at LO with MADGRAPH5_AMC@NLO + PYTHIA 8.3. SMEFT effects are modelled using SMEFTsim3 (and SMEFT@NLO for loop-induced processes gg \rightarrow H and gg \rightarrow ZH)
- Phase space selections for each kinematic bin are reproduced using RIVET 3.1.9
- NNPDF 3.1 is used when computing the parameterizations
- All parameterizations use $\{m_W, m_Z, G_F\}$ input scheme and topU31 flavour symmetry

SMEFT operators (1/2)

	X^3	
${\cal Q}_{ m G} = f^{abc}G^{a u}_\mu G^{b ho}_ u G^{c\mu}_ ho$	$\mathcal{Q}_{\mathrm{W}} = arepsilon^{ijk} W^{i u}_{\mu} W^{j ho}_{ u} W^{k\mu}_{ ho}$	
	H^4D^2	
$\mathcal{Q}_{\mathrm{H}\Box} = (H^{\dagger}H)\Box(H^{\dagger}H)$	$\mathcal{Q}_{\rm HD} = (D^{\mu}H^{\dagger}H)(H^{\dagger}D_{\mu}H)$	
	X^2H^2	
$\mathcal{Q}_{\mathrm{HG}} = H^{\dagger} H G^{a}_{\mu u} G^{a\mu u}$	$\mathcal{Q}_{ m HW} = H^{\dagger} H W^{i}_{\mu u} W^{i\mu u}$	$\mathcal{Q}_{\mathrm{HB}} = H^{\dagger} H B_{\mu u} B^{\mu u}$
$\mathcal{Q}_{ m HWB}\!=H^{\dagger}HW^{i}_{\mu u}B^{\mu u}$		
	$\psi^2 H^3$	
$\mathcal{Q}_{\mathrm{tH}} = (H^{\dagger}H)(\overline{Q}\tilde{H}t)$	$\mathcal{Q}_{\mathbf{b}\mathbf{H}} = (H^{\dagger}H)(\overline{Q}Hb)$	
	$\psi^2 X H$	
${\cal Q}_{ m tW} ~= (\overline{Q}\sigma^{\mu u}t)\sigma^i ilde{H}W^i_{\mu u}$	$\mathcal{Q}_{\mathrm{tB}} = (\overline{Q}\sigma^{\mu\nu}t)\tilde{H}B_{\mu\nu}$	${\cal Q}_{ m tG} = (\overline{Q}\sigma^{\mu u}T^at) ilde{H}G^a_{\mu u}$
	$\psi^2 H^2 D$	
${\cal Q}_{ m Hl}^{(1)} = (H^\dagger i \stackrel{\leftrightarrow}{D_\mu} H) (\bar l_p \gamma^\mu l_r)$	$\mathcal{Q}_{\mathrm{HI}}^{(3)} = (H^{\dagger}i D_{\mu}^{\leftrightarrow} H) (\bar{l}_{p} \sigma^{i} \gamma^{\mu} l_{r})$	$\mathcal{Q}_{\mathrm{He}} = (H^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} H)(\bar{e}_{p} \gamma^{\mu} e_{r})$
${\cal Q}_{ m Hq}^{(1)} ~= (H^\dagger i {\stackrel{\leftrightarrow}{D}}_{\!\mu} H) (ar{q} \gamma^\mu q)$	${\cal Q}_{ m Hq}^{(3)} = (H^\dagger i \overset{\leftrightarrow}{D^i_\mu} H) (ar{q} \sigma^i \gamma^\mu q)$	$\mathcal{Q}_{\mathrm{Hu}} = (H^{\dagger}i \overleftrightarrow{D_{\mu}} H) (\overline{u} \gamma^{\mu} u)$
${\cal Q}_{ m Hd} \;\; = (H^\dagger i {\stackrel{\leftrightarrow}{D_\mu}} H) (\overline{d} \gamma^\mu d)$	$\mathcal{Q}_{\mathrm{HQ}}^{(1)} = (H^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} H) (\overline{Q} \gamma^{\mu} Q)$	$\mathcal{Q}_{\mathrm{HQ}}^{(3)} = (H^{\dagger}i \overleftrightarrow{D_{\mu}^{i}} H) (\overline{Q} \sigma^{i} \gamma^{\mu} Q)$
$\mathcal{Q}_{\mathrm{Ht}} = (H^{\dagger}i D_{\mu} H)(\bar{t} \gamma^{\mu} t)$	$\mathcal{Q}_{\mathrm{Hb}} = (H^{\dagger}iD_{\mu}H)(\overline{b}\gamma^{\mu}b)$	

 $2 \ {\rm December} \ 2024$

SMEFT operators (2/2)

	ψ^4 , $(\overline{L}L)(\overline{L}L)$	
$\mathcal{Q}_{ m lq}^{(1)} = (ar{l}_p \gamma_\mu l_r) (ar{q} \gamma^\mu q)$	$\mathcal{Q}^{(3)}_{\mathrm{lq}} = (ar{l}_p \sigma^i \gamma_\mu l_r) (ar{q} \sigma^i \gamma^\mu q)$	$\mathcal{Q}_{\mathrm{lQ}}^{(1)} = (ar{l}_p \gamma_\mu l_r) (\overline{Q} \gamma^\mu Q)$
${\cal Q}_{ m lQ}^{(3)} ~= (ar l_p \sigma^i \gamma_\mu l_r) (ar Q \sigma^i \gamma^\mu Q)$	$\mathcal{Q}_{\mathbf{Q}\mathbf{Q}}^{(\hat{1})} = (\overline{Q}\gamma_{\mu}Q)(\overline{Q}\gamma^{\mu}Q)$	$\mathcal{Q}_{\mathrm{ll}} = (\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$
${\cal Q}_{ m qq}^{(\overline{1},1)}=(\overline{q}\gamma_{\mu}q)(\overline{q}\gamma^{\mu}q)$	$\mathcal{Q}_{ m qq}^{(ar{1},ar{8})}=(ar{q}T^a\gamma_\mu q)(ar{q}T^a\gamma^\mu q)$	${\cal Q}_{ m qq}^{(3,1)}=(ar q\sigma^i\gamma_\mu q)(ar q\sigma^i\gamma^\mu q)$
${\cal Q}^{(3,8)}_{ m qq} = (\overline{q}\sigma^iT^a\gamma_\mu q)(\overline{q}\sigma^iT^a\gamma^\mu q)$	${\cal Q}_{ m Qq}^{(1,1)}=(\overline{Q}\gamma_\mu Q)(\overline{q}\gamma^\mu q)$	${\cal Q}_{ m Qq}^{(1,8)}=(\overline{Q}T^a\gamma_\mu Q)(\overline{q}T^a\gamma^\mu q)$
${\cal Q}_{ m Qq}^{(3,1)}=(\overline{Q}\sigma^i\gamma_\mu Q)(\overline{q}\sigma^i\gamma^\mu q)$	$\mathcal{Q}_{\mathrm{Qq}}^{(3,\overline{8})} = (\overline{Q}\sigma^{i}T^{a}\gamma_{\mu}Q)(\overline{q}\sigma^{i}T^{a}\gamma^{\mu}q)$	-
	ψ^4 , $(\overline{R}R)(\overline{R}R)$	
$\mathcal{Q}_{\mathrm{et}} = (\bar{e}_p \gamma_\mu e_r) (\bar{t} \gamma^\mu t)$	${\cal Q}_{ m tt} = (ar t \gamma_\mu t) (ar t \gamma^\mu t)$	${\cal Q}_{ m uu}^{(1)} = (\overline{u} \gamma_\mu u) (\overline{u} \gamma^\mu u)$
${\cal Q}^{(8)}_{ m uu} = (\overline{u}T^a\gamma_\mu u)(\overline{u}T^a\gamma^\mu u)$	${\cal Q}^{(1)}_{ m tu} = (ar t \gamma_\mu t) (ar u \gamma^\mu u)$	${\cal Q}^{(8)}_{ m tu} = (ar t T^a \gamma_\mu t) (ar u T^a \gamma^\mu u)$
${\cal Q}_{ m dd}^{(1)} ~= (\overline{d} \gamma_\mu d) (\overline{d} \gamma^\mu d)$	${\cal Q}^{(8)}_{ m dd} = (\overline{d}T^a \gamma_\mu d) (\overline{d}T^a \gamma^\mu d)$	${\cal Q}_{ m ud}^{(1)} = (\overline{u} \gamma_\mu u) (\overline{d} \gamma^\mu d)$
$\mathcal{Q}^{(8)}_{\mathrm{ud}} = (\overline{u}T^a\gamma_\mu u)(\overline{d}T^a\gamma^\mu d)$	${\cal Q}_{ m td}^{(1)} = (ar t \gamma_\mu t) (ar d \gamma^\mu d)$	${\cal Q}^{(8)}_{ m td} = (ar t T^a \gamma_\mu t) (ar d T^a \gamma^\mu d)$
	ψ^4 , $(\overline{L}L)(\overline{R}R)$	
$\mathcal{Q}_{\mathrm{lu}} = (\bar{l}_p \gamma_\mu l_r) (\bar{u} \gamma^\mu u)$	$\mathcal{Q}_{\mathrm{lt}} = (\bar{l}_p \gamma_\mu l_r) (\bar{t} \gamma^\mu t)$	${\cal Q}_{ m qu}^{(1)} = (ar q \gamma_\mu q) (ar u \gamma^\mu u)$
${\cal Q}^{(8)}_{ m qu} ~~= (\overline{q}T^a \gamma_\mu q) (\overline{u}T^a \gamma^\mu u)$	${\cal Q}_{{ m Qu}}^{(1)} = (\overline{Q} \gamma_\mu Q) (\overline{u} \gamma^\mu u)$	${\cal Q}^{(8)}_{ m Qu} = (\overline{Q}T^a\gamma_\mu Q)(\overline{u}T^a\gamma^\mu u)$
${\cal Q}_{ m qt}^{(1)} ~= (ar q \gamma_\mu q) (ar t \gamma^\mu t)$	${\cal Q}_{ m qt}^{(8)} = (ar q T^a \gamma_\mu q) (ar t T^a \gamma^\mu t)$	$\mathcal{Q}_{ ext{Qt}}^{(1)} = (\overline{Q} \gamma_{\mu} Q) (\overline{t} \gamma^{\mu} t)$
${\cal Q}_{ m Qt}^{(8)} ~= (\overline{Q}T^a\gamma_\mu Q)(ar{t}T^a\gamma^\mu t)$	$\left egin{array}{c} \mathcal{Q}_{\mathrm{qd}}^{(1)} &= (\overline{q}\gamma_{\mu}q)(\overline{d}\gamma^{\mu}d) \end{array} ight.$	$\mathcal{Q}_{ ext{qd}}^{(8)} = (ar{q}T^a\gamma_\mu q)(ar{d}T^a\gamma^\mu d)$
${\cal Q}_{ m Qd}^{(1)} ~= (\overline{Q} \gamma_\mu Q) (\overline{d} \gamma^\mu d)$	$\left \begin{array}{c} \mathcal{Q}_{\mathrm{Qd}}^{(8)} \end{array} \right = (\overline{Q}T^a\gamma_\mu Q)(\overline{d}T^a\gamma^\mu d)$	

2 December 2024

Input Measurements: CMS-TOP-22-006, ttX EFT

• CMS-TOP-22-006 (JHEP 12 (2023) 068):

EFT in associated top quark production (t $\bar{t}H$, t $\bar{t}W$, t $\bar{t}Z$, tZq, tHq, and t $\bar{t}t\bar{t}$ processes)

- Each process can be studied individually, but they are irreducible backgrounds to each other
- Event selection based on number of leptons, jets, and b-tagged jets
 - o 43 categories, binning in a kinematical variable within each category
- Total predicted event yield in each observable bin parameterized as a quadratic function of 26 WCs
 - Detector-level predictions accounting for all relevant EFT effects on each of the signal processes simultaneously

Input Measurements: CMS-TOP-22-006, ttX EFT

- Original analysis sets constraints on 26 Wilson coefficients in the dim6top basis
- In the combination we use topU31 SMEFT basis as implemented in SMEFTsim3, and consider additional operators that may affect the tTX processes
- To include $t\bar{t}X$ analysis in the combination in a consistent way, we therefore had to
 - rotate from dim6top to SMEFT topU31
 - $\circ~$ study the effect of missing operators on $\ensuremath{\mathrm{t\bar{t}X}}$ processes
- *Q*_{H□} uniformly scales all SM Higgs boson couplings
 added to tt̄X analysis as rescaling of tt̄H and tHq signals
- 2-heavy-2-light quark operators enhance $t\bar{t}Z$ and $t\bar{t}H$ production rates (effect on shape and normalization)
 - added to tt¯X analysis by **reweighting the signal samples** using standalone reweighting modules produced by MadGraph («post-mortem reweighting»)
- Effect of other operators found to be negligible

