RGE effects in global EFT fits Eleni Vryonidou University of Manchester

European Research Council Established by the European Commission

LHC EFT WG meeting, 2/12/24

Processes and observables

Processes and observables

Processes and observables

$$c_i^6(\mu)a_{n,i}^6(\mu) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right) \longrightarrow \text{Constraints on WC}$$

Huge effort to improve each one of these steps!

Eleni Vryonidou

For the best results: Do this in a global fit!

Eleni Vryonidou

Ingredients of global fits **SMEFiT** as a global fit example

Flavour assumption:

 $U(2)_q \times U(3)_d \times U(2)_u \times (U(1)_\ell \times U(1)_e)^3$ + Yukawa of bottom, charm and tau

50 degrees of freedom: 2F, 2L2H, 4H, Bosonic SMEFiT3.0 Celada, Giani, Mantani, Rojo, Rossia, Thomas, EV, ter Hoeve arXiv:2404.12809

See also: FitMaker arXiv:2012.02779, HEPfit arXiv:1910.14012

Eleni Vryonidou

Experimental data

Category	Processes	^{at} SMEF
Top quark production	$t\bar{t} + X$, 11
	$tar{t}Z,tar{t}W$	21
	$tar{t}\gamma$	2
	single top (inclusive)	28
	tZ,tW	13
	$tar{t}tar{t}$, $tar{t}bar{b}$	12
	Total	19
	Run I signal strengths	22
Higgs production and decay	Run II signal strengths	36 (
	Run II, differential distributions & STXS	71
	Total	12
Diboson production	LEP-2	40
	LHC	41
	Total	81
EWPOs	LEP-2	44
Baseline dataset	Total	44

- Bounds varying between operators •
- Most Wilson coefficient bounds below 1 for Λ =1 TeV •
- Quadratic terms important especially for 4F operators
- Least constrained coefficients are 4-top operators •

SMEFiT3.0 Celada, Giani, Mantani, Rojo, Rossia, Thomas, EV, ter Hoeve arXiv:2404.12809

Eleni Vryonidou

LHC EFT WG 2/12/24

- Bounds varying between operators •
- Most Wilson coefficient bounds below 1 for Λ =1 TeV •
- Quadratic terms important especially for 4F operators
- Least constrained coefficients are 4-top operators •

SMEFiT3.0 Celada, Giani, Mantani, Rojo, Rossia, Thomas, EV, ter Hoeve arXiv:2404.12809

Eleni Vryonidou

LHC EFT WG 2/12/24

- Bounds varying between operators •
- Most Wilson coefficient bounds below 1 for Λ =1 TeV •
- Quadratic terms important especially for 4F operators
- Least constrained coefficients are 4-top operators •

SMEFiT3.0 Celada, Giani, Mantani, Rojo, Rossia, Thomas, EV, ter Hoeve arXiv:2404.12809

Eleni Vryonidou

LHC EFT WG 2/12/24

Future of global fits

How can we improve fits?

More observables:

- Particle level observables
- New final states
- Better description: EFT in backgrounds

Better EFT predictions

More/less/different operators: • Different flavour assumptions • UV inspired scenarios

EFT is a QFT, renormalisable order-by order in $1/\Lambda^2$

SMEFT computations at dimension-6

 $\Delta Obs_n = Obs_n^{\mathsf{EXP}} - Obs_n^{\mathsf{SM}} = \sum_{i} \frac{c_i^6(\mu)}{\Lambda^2} \left| a_{n,i}^6(\mu) \right| + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$

NLO QCD & loop-induced: Done (SMEFT@NLO) Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743 http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO

NLO EW: Some examples available, progress towards automating these as well (see next talk)

SMEFT computations at dimension-6

 $\Delta Obs_n = Obs_n^{\mathsf{EXP}} - Obs_n^{\mathsf{SM}} = \sum_{i} \frac{c_i^6(\mu)}{\Lambda^2} \left| a_{n,i}^6(\mu) \right| + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$

NLO QCD & loop-induced: Done (SMEFT@NLO) Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743 http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO

(see next talk)

How about this μ ? When should we worry about it?

- NLO EW: Some examples available, progress towards automating these as well

SMEFT computations at dimension-6

 $\Delta Obs_n = Obs_n^{\mathsf{EXP}} - Obs_n^{\mathsf{SM}} = \sum_{i} \frac{c_i^6(\boldsymbol{\mu})}{\Lambda^2} \left| a_{n,i}^6(\boldsymbol{\mu}) \right| + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$

NLO QCD & loop-induced: Done (SMEFT@NLO) Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743 http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO

(see next talk)

How about this μ ? When should we worry about it?

- Observables with different natural scales (flavour, EW, Higgs, top, 4-tops)
- Differential distributions: e.g. in a typical top fit bins of reaching 2 TeV
- Eventually we want to match to the UV

- NLO EW: Some examples available, progress towards automating these as well

What is next for global fits?

Need for RGE running and mixing:

Different scales and Dynamical scales Anomalous dimension matrix known at 1-loop:

Jenkins et al arXiv:1308.2627, 1310.4838, Alonso et al 1312.2014

- 2499x2499 anomalous dimension matrix available
- Including both QCD, weak, Yukawa terms
- Implemented in various tools: e.g. Wilson: Aebischer et al <u>1712.05298</u>, RGESolver: Di Noi and Silvestrini arXiv:2210.06838

**2-loop RGE: not known in general (some pieces known, typically from flavour physics and recent computations: see e.g. arXiv:2410.07320)

- LHC EFT WG 2/12/24

Example 1: top physics

$$\frac{dc_i(\mu)}{d\log\mu} = \gamma_{ij} \, c_j(\mu)$$

Example: Turn on 1 operator at high-scale

Compute effect on top pair cross-section

 $c_{Ou}^{1} = 1$ at 2 TeV

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067

Example 1: top physics

$$\frac{dc_i(\mu)}{d\log\mu} = \gamma_{ij} \, c_j(\mu)$$

Example: Turn on 1 operator at high-scale

Compute effect on top pair cross-section

 $c_{Ou}^{1} = 1$ at 2 TeV

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067

Implementation of RGE in Monte Carlo How to get RGE improved predictions?

Anomalous dimension included in UFO model **Mathebra Running code extracted automatically by MG5_aMC** Output Define coefficients at given scale, and run to preferred scale Options in run_card.dat

CONTROL The additional running scale (not QCD) Such running is NOT include in systematics computation True = fixed_other_scale ! False means dynamical scale 1000 = muo ref fixed ! scale to use if fixed scale mode = muo over ref ! ratio to mur if dynamical scale 1.0

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067

Fixed scale or a dynamical (as for alphas)

Dynamical scale a function of usual μ_{R}

Example 2: Higgs physics

$$\frac{dc_i(\mu)}{d\log\mu} = \gamma_{ij} c_j(\mu) \qquad \mathcal{O}_{\varphi G} = \left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right) G^a_{\mu\nu} G^{\mu\nu}_a \quad \bullet \quad \mathcal{O}_{t\varphi} = \left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right) \bar{Q}\tilde{\varphi}t + \text{h.c.}$$

$$\mathcal{O}_{tG} = ig_s(\bar{Q}\tau^{\mu\nu}T^a\tilde{\varphi}t)G^a_{\mu\nu} + h.c$$

Eleni Vryonidou

 $C_{t\varphi}$

QCD induced running

Impact of RGE on constraints

How does running and mixing impacts the constraints?

Top sector fit:

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067 More important for differential distributions & measurements with very different scales

RGE evolution within MC:

PS by PS point computation of coefficients: dynamical scale e.g. $H_T/2$

LHC EFT WG 2/12/24

Impact of RGE on constraints How does running and mixing impacts the constraints? Higgs sector fit

Maltoni, Ventura, EV arXiv:2406.06670

See also Battaglia, Grazzini, Spira, Wiesemann arXiv: 2109.02987 Di Noi, Grober arXiv:2312.11327 Di Noi, Grober, Mandal arXiv: 2408.03252

Eleni Vryonidou

Incl. ATLAS+CMS	ttH CMS	HH Proj
$- \mu = \sqrt{M_H^2 + P_T^2} -$	$\mu = \sqrt{M_H^2 + P_T^2}$	μ= <i>Μ</i> _F
μ= M _H	μ= <i>M</i> _H	— μ= M _F
μ= 1 TeV	μ= 1 TeV	μ= 1 T

Eventually need to be taken into account in a global fit!

LHC EFT WG 2/12/24

How about a real global fit? How to practically include these effects in a global fit?

Eleni Vryonidou

- Data points cover a large range of scales from $M_{\rm Z}$ to 2-3 TeV
- Ideally we would like a fully dynamical scale setup as often employed in SM predictions
- That requires rerunning the MC for every single theoretical prediction
- **Reasonable approximation?**
- Assign one scale to each data point

How about a real global fit? How to practically include these effects in a global fit?

Practical SMEFiT implementation:

- Associate one scale to each observable (445 datapoints)
- Use Wilson to do the running between chosen starting and _... the scale of each datapoint

$$\Gamma(\mu,\mu_0;lpha_s,lpha) = \exp\left(\int_{\mu_0}^{\mu} d\log(\mu')\gamma(lpha_s,lpha)
ight)$$
 Evo

$$T_{\rm EFT}(\boldsymbol{c}(\mu)/\Lambda^2) = T_{\rm SM} + \sum_{i=1}^{n_{\rm op}} \kappa_i \frac{c_i(\mu)}{\Lambda^2} \qquad \qquad T_{\rm EFT}(\boldsymbol{c}(\mu_0)/\Lambda^2) = T_{\rm SM}$$

 $= T_{\rm SM} +$

Eleni Vryonidou

Validation with arXiv:2212.05067

ter Hoeve, Mantani, Rojo, Rossia, EV in preparation

Eleni Vryonidou

Correlation patterns change

When can the RGE matter?

For unconstrained operators RGE can offer new sensitivity Example: 4-heavy 4-fermion coefficients Significant improvement of bounds due to impact on EWPO at FCC

Marginalised 95 % C.L. intervals

ter Hoeve, Mantani, Rojo, Rossia, EV in preparation

How about particular UV complete models?

2HDM in decoupling limit

Eleni Vryonidou

2-scalar EW quadruplet model

 $\mathscr{L}_{UV} \supset -\lambda_{\Phi} H^* H^* (\varepsilon H) \Phi - \lambda_{\widetilde{\Phi}} H^* H^* H^* \widetilde{\Phi} / \sqrt{3} + \text{h.c.},$

Durieux, McCullough, Salvioni arXiv:2209.00666

Impact of RGE and 1-loop matching Significant improvement of reach due to impact on EWPO at FCC

ter Hoeve, Mantani, Rojo, Rossia, EV in preparation

How about particular UV complete models?

2HDM in decoupling limit

Eleni Vryonidou

2-scalar EW quadruplet model

 $\mathscr{L}_{UV} \supset -\lambda_{\Phi} H^* H^* (\varepsilon H) \Phi - \lambda_{\widetilde{\Phi}} H^* H^* H^* \widetilde{\Phi} / \sqrt{3} + \text{h.c.},$

Durieux, McCullough, Salvioni arXiv:2209.00666

Impact of RGE and 1-loop matching Significant improvement of reach due to impact on EWPO at FCC

ter Hoeve, Mantani, Rojo, Rossia, EV in preparation

How about particular UV complete models?

2HDM in decoupling limit

Eleni Vryonidou

2-scalar EW quadruplet model

 $\mathscr{L}_{UV} \supset -\lambda_{\Phi} H^* H^* (\varepsilon H) \Phi - \lambda_{\widetilde{\Phi}} H^* H^* H^* \widetilde{\Phi} / \sqrt{3} + \text{h.c.},$

Durieux, McCullough, Salvioni arXiv:2209.00666

Impact of RGE and 1-loop matching Significant improvement of reach due to impact on EWPO at FCC

ter Hoeve, Mantani, Rojo, Rossia, EV in preparation

Summary

Global fit results affected by the precision of EFT predictions

Aim to include more and more precise theory predictions in the fits

constraints

UV complete models

- Inclusion of RGE effects in predictions is necessary, and can significantly affect
- Particularly important for poorly constrained operators and in the constraints on

