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EFT pathway to new physics
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For the best results: Do this in a global fit! 
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Ingredients of global fits
SMEFiT as a global fit example

3

+ Yukawa of bottom, charm and tau

50 degrees of freedom: 2F, 2L2H, 4H, Bosonic

Flavour assumption: 

SMEFiT3.0 Celada, Giani, Mantani, Rojo, Rossia, Thomas, EV, ter Hoeve  arXiv:2404.12809 

Current-current + Dipoles

Yukawas Bosonic 

4F operators

Experimental data

See also: FitMaker arXiv:2012.02779, HEPfit arXiv:1910.14012 

https://arxiv.org/abs/1910.14012
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Global fit results 

4

• Bounds varying between operators 
• Most Wilson coefficient bounds below 1 for Λ=1 TeV
• Quadratic terms important especially for 4F operators
• Least constrained coefficients are 4-top operators 

SMEFiT3.0 Celada, Giani, Mantani, Rojo, Rossia, Thomas, EV, ter Hoeve  arXiv:2404.12809 
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Future of global fits
How can we improve fits?

5

Better EFT predictions
Higher Orders in 1/Λ4 

• squared dim-6 contributions 
• double insertions of dim-6 
• dim-8 contributions 

Higher Orders in QCD and EW 
EFT is a QFT, renormalisable order-by order in 1/Λ2 

More observables:
• Particle level observables 
• New final states 
• Better description: EFT in backgrounds

More/less/different operators:
• Different flavour assumptions 
• UV inspired scenarios

𝒪(αs, αew) + 𝒪 ( 1
Λ2 ) + 𝒪 ( αs

Λ2 ) + 𝒪 ( αew

Λ2 )
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SMEFT computations at dimension-6 

6

ΔObsn = ObsEXP
n − ObsSM

n = ∑
i

c6
i (μ)
Λ2

a6
n,i(μ) + 𝒪 ( 1

Λ4 )
NLO QCD & loop-induced: Done (SMEFT@NLO)                    


http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO


NLO EW: Some examples available, progress towards automating these as well 
(see next talk)

Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO
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• Observables with different natural scales (flavour, EW, Higgs, top, 4-tops)


• Differential distributions: e.g. in a typical top fit bins of  reaching 2 TeV


• Eventually we want to match to the UV

http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO
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What is next for global fits?

7

Need for RGE running and mixing: 


Different scales and Dynamical scales
Anomalous dimension matrix known at 1-loop: 


Jenkins et al arXiv:1308.2627, 1310.4838, Alonso et al 1312.2014


• 2499x2499 anomalous dimension matrix available 


• Including both QCD, weak, Yukawa terms


• Implemented in various tools: e.g. Wilson: Aebischer et al 1712.05298, RGESolver: 
Di Noi and Silvestrini arXiv:2210.06838

**2-loop RGE: not known in general (some pieces known, typically from 
flavour physics and recent computations: see e.g. arXiv:2410.07320)

https://arxiv.org/abs/1712.05298
https://arxiv.org/abs/2210.06838
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Example 1: top physics

8

2 Computation and Monte Carlo implementation setup

In the context of the SMEFT, cross-sections can be decomposed in the following form:

d�(µR, µF ;µ) = d�SM(µR, µF )

+
X

i

ci(µ) d�i(µR, µF ;µ) +
X

ij

ci(µ) cj(µ) d�ij(µR, µF ;µ) + ... , (2.1)

where the various Wilson coefficients are denoted ci, and the explicit dependence on non-
physical scales has been highlighted. In particular, µR denotes the SM renormalization
scale, µF the factorization scale, and µ the EFT renormalization scale.

It is worth noting that the µ dependence of d� enters through the Wilson coefficients
at all perturbative orders, and through the d�i··· at one-loop and beyond. In particular, if
SMEFT corrections are only considered at the tree level, the only µ dependence is through
the RG flow of Wilson coefficients.

The RGE of the SMEFT reads:

dci(µ)

d logµ
= �ij cj(µ), (2.2)

with �ij the anomalous dimension matrix. We note here that we focus on the QCD-induced
part of the running, i.e. we ignore terms in the anomalous dimension matrix which are not
proportional to ↵s. The � matrix is then expanded in the ↵s as:

�ij =
X

k=1

✓
↵s

4⇡

◆k

�QCD,k
ij (2.3)

Due to the large value of ↵s, we expect �QCD,1
ij to typically give the leading contribution

to the running and mixing of the Wilson coefficients at present hadron collider energies1

The solution to the RGE equation (2.2) is given by:

ci(µ) = �ij(µ, µ0) cj(µ0), (2.4)

where µ0 is a reference scale. The � matrix can be evaluated order by order in ↵s, at order
1 it reads:

�QCD,1(µ, µ0) ⌘ exp
✓Z µ

µ0

↵s(µ0)

4⇡µ0 dµ0 �QCD,1

◆
. (2.5)

The computation described above forms the basis of our Monte Carlo implementation,
which takes the form:

�QCD,1(µ, µ0) = exp
✓

1

2�0
log

↵s(µ0)

↵s(µ)
�QCD,1

◆
, �0 = 11�

2

3
nf , (2.6)

obtained by using the one-loop accurate expression for ↵s(µ) in (2.5); nf represents the
number of light flavours.

1With exceptions from supposedly subleading EW contributions case of tt̄W and 4 tops [20, 21].
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Figure 4: Linear interference contribution at LO QCD and LO EW to the tt̄ invariant
mass differential cross-section for pp ! tt̄ at

p
s = 13TeV induced by the 2L2H color-octet

operator O
(8)
tq (top) and by the 2L2H color-singlet operator O

(1)
Qu (bottom), under the two

scale choices µ = mtop and µ = HT /2. The coefficients are set to 1 at µ0 = 2TeV and RGE
evolved. The results obtained without any running are also shown for comparison. The
SM renormalization and factorization scales µR and µF are set to HT /2. The bottom plot
shows the ratio between µ = HT /2 and µ = mtop; uncertainty is Monte Carlo.

– 12 –

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067

Example: Turn on 1 operator at high-scale


Compute effect on top pair cross-section 
Figure 3: Renormalization group flow of the tt̄ interference cross-section induced by
c(8)tq (µ0 = 2TeV) = 1 (left) and c(1)Qu(µ0 = 2TeV) = 1 (right), which are set to unity at
2 TeV, at LO QCD and LO EW. The contributions proportional to each Wilson coefficient
are drawn separately in color, and the total cross-section is drawn in black. The vertical
grey line shows mtop.

dependent point µ = HT /2.
We show results for two 4-fermion operators, one color-octet 2L2H and one color-singlet

2L2H, in Fig 4. The impact of a different scale choice is moderate for the color-octet 2L2H
operator reaching at most 10%, as already discussed above, while it amounts to a significant,
O(50%), shift for the 2L2H color-singlet operator. As expected, the difference between our
two scale choices is larger for the higher energy bins, where HT /2 � mtt̄, while the two
scales coincide at threshold as shown in the inset of Fig 4. We provide additional plots,
similar to Figure 4, for other 2L2H and 4H operators in Appendix B.

4.4 Comparison of NLO with the RGE-evolved LO

CS: === To be confirmed ===
The interference cross-sections obtained in previous Sections are leading log improved

QCD results and thus not contain all the information that would be present in a full NLO
calculation. In this Section, we aim to determine if RGE-evolved LO results can serve as
a proxy for results at NLO. To do so, we evaluate the LO and NLO QCD cross-section
for top pair production at

p
s = 13 TeV with, as above, the Wilson coefficients defined as

unity at µ0 = 2 TeV and run to a lower scale µ. We show the comparison for four selected
operators in Fig 5. Both the LO and NLO interferences are evolved under the one-loop RGE
we extracted. We note that for a formal NLO accuracy the 2-loop anomalous dimension
matrix would be needed, but this result is not yet available therefore we are only able to
employ the one-loop anomalous dimension for our comparisons.

Two features are evident from Fig 5: first, the NLO cross-section is significantly more
stable with respect to scale variations than the LO one, as expected. Second, relevant for
our comparison, RGE corrections usually improve the leading-order predictions, especially
in the case of colour-singlet operators. Starting from the initial condition at the high scale
µ0, the LO cross-section tends to run in the direction of its NLO value, growing if the NLO
is larger and decreasing if the NLO is smaller. For instance, in the case of O1

Qd, the RGE-
corrected LO cross-section and the NLO cross-section almost exactly agree at µ = mtop. In

– 11 –
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The interference cross-sections obtained in previous Sections are leading log improved

QCD results and thus not contain all the information that would be present in a full NLO
calculation. In this Section, we aim to determine if RGE-evolved LO results can serve as
a proxy for results at NLO. To do so, we evaluate the LO and NLO QCD cross-section
for top pair production at

p
s = 13 TeV with, as above, the Wilson coefficients defined as

unity at µ0 = 2 TeV and run to a lower scale µ. We show the comparison for four selected
operators in Fig 5. Both the LO and NLO interferences are evolved under the one-loop RGE
we extracted. We note that for a formal NLO accuracy the 2-loop anomalous dimension
matrix would be needed, but this result is not yet available therefore we are only able to
employ the one-loop anomalous dimension for our comparisons.

Two features are evident from Fig 5: first, the NLO cross-section is significantly more
stable with respect to scale variations than the LO one, as expected. Second, relevant for
our comparison, RGE corrections usually improve the leading-order predictions, especially
in the case of colour-singlet operators. Starting from the initial condition at the high scale
µ0, the LO cross-section tends to run in the direction of its NLO value, growing if the NLO
is larger and decreasing if the NLO is smaller. For instance, in the case of O1

Qd, the RGE-
corrected LO cross-section and the NLO cross-section almost exactly agree at µ = mtop. In
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Implementation of RGE in Monte Carlo
How to get RGE improved predictions?
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Anomalous dimension included in UFO model


Running code extracted automatically by MG5_aMC


Define coefficients at given scale, and run to preferred scale


Options in run_card.dat

Fixed scale or a dynamical 
(as for alphas)


Dynamical scale a function of 
usual μR

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067



Eleni Vryonidou LHC EFT WG 2/12/24

Example 2: Higgs physics

10

2 Computation and Monte Carlo implementation setup

In the context of the SMEFT, cross-sections can be decomposed in the following form:

d�(µR, µF ;µ) = d�SM(µR, µF )

+
X

i

ci(µ) d�i(µR, µF ;µ) +
X

ij

ci(µ) cj(µ) d�ij(µR, µF ;µ) + ... , (2.1)

where the various Wilson coefficients are denoted ci, and the explicit dependence on non-
physical scales has been highlighted. In particular, µR denotes the SM renormalization
scale, µF the factorization scale, and µ the EFT renormalization scale.

It is worth noting that the µ dependence of d� enters through the Wilson coefficients
at all perturbative orders, and through the d�i··· at one-loop and beyond. In particular, if
SMEFT corrections are only considered at the tree level, the only µ dependence is through
the RG flow of Wilson coefficients.

The RGE of the SMEFT reads:

dci(µ)

d logµ
= �ij cj(µ), (2.2)

with �ij the anomalous dimension matrix. We note here that we focus on the QCD-induced
part of the running, i.e. we ignore terms in the anomalous dimension matrix which are not
proportional to ↵s. The � matrix is then expanded in the ↵s as:

�ij =
X

k=1

✓
↵s

4⇡

◆k

�QCD,k
ij (2.3)

Due to the large value of ↵s, we expect �QCD,1
ij to typically give the leading contribution

to the running and mixing of the Wilson coefficients at present hadron collider energies1

The solution to the RGE equation (2.2) is given by:

ci(µ) = �ij(µ, µ0) cj(µ0), (2.4)

where µ0 is a reference scale. The � matrix can be evaluated order by order in ↵s, at order
1 it reads:

�QCD,1(µ, µ0) ⌘ exp
✓Z µ

µ0

↵s(µ0)

4⇡µ0 dµ0 �QCD,1

◆
. (2.5)

The computation described above forms the basis of our Monte Carlo implementation,
which takes the form:

�QCD,1(µ, µ0) = exp
✓

1

2�0
log

↵s(µ0)

↵s(µ)
�QCD,1

◆
, �0 = 11�

2

3
nf , (2.6)

obtained by using the one-loop accurate expression for ↵s(µ) in (2.5); nf represents the
number of light flavours.

1With exceptions from supposedly subleading EW contributions case of tt̄W and 4 tops [20, 21].
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Maltoni, Ventura, EV arXiv:2406.06670

QCD induced running

Higgs : H+jpT Higgs pair production
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(a) (b)

Figure 7: 68% (solid) and 95% (dashed) allowed regions for the Wilson coefficients c8Qu and
c(8,3)Qq , left, and c8tq and c(8,1)Qq , right, under the three RGE conditions described in the text:
no running (blue), dynamical scale (orange), and fixed scale (yellow). Wilson coefficients
are evaluated at µ0 = 2TeV, the NP scale is also set to ⇤ = 2TeV. Our EFT predictions
include both the linear and quadratic terms.

Going beyond the SMEFT, the running and mixing implementation can be used for
other New Physics scenarios which involve running couplings. Our implementation already
steps in this direction, by allowing a more general RGE than the one we considered for the
SMEFT. This work paves the way for including running and mixing effects in all future
interpretations of LHC measurements.
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A Generation details

This Section contains details of our implementation of the RGE in Madgraph5_aMC@NLO,
public since version 3.4.0. As the two-loop accurate RGE is currently not fully known, our
implementation is limited to LO event generation only, to preserve the formal accuracy
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How does running and mixing impacts the constraints?

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067

More important for differential distributions & measurements with very different scales 

Top sector fit:  

RGE evolution within MC:


PS by PS point computation 
of coefficients: dynamical 
scale e.g. HT/2
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How does running and mixing impacts the constraints?

Eventually need to be taken into account in a global fit!

Higgs sector fit

See also Battaglia, Grazzini, Spira, Wiesemann arXiv: 2109.02987

Di Noi, Grober arXiv:2312.11327

Di Noi, Grober, Mandal arXiv: 2408.03252


Maltoni, Ventura, EV arXiv:2406.06670
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How about a real global fit?
How to practically include these effects in a global fit?
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Data points cover a large range of scales 
from  to 2-3 TeV


Ideally we would like a fully dynamical 
scale setup as often employed in SM 
predictions


That requires rerunning the MC for every 
single theoretical prediction


Reasonable approximation? 


Assign one scale to each data point

MZ
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How about a real global fit?
How to practically include these effects in a global fit?
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Validation with arXiv:2212.05067 

Practical SMEFiT implementation:  


• Associate one scale to each observable  (445 datapoints)


• Use Wilson to do the running between chosen starting and 
the scale of each datapoint 

Evolution matrix

arXiv:2212.05067 


SMEFiT
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Global fit results
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Preliminary

ter Hoeve, Mantani, Rojo, Rossia, EV in preparation

Some operators get better constrained as they enter in 
more observables

Correlation patterns change 

RGE
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When can the RGE matter? 
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ter Hoeve, Mantani, Rojo, Rossia, EV in preparation

For unconstrained operators RGE can offer new sensitivity

Example: 4-heavy 4-fermion coefficients

Significant improvement of bounds due to impact on EWPO at FCC

Preliminary

Preliminary
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ter Hoeve, Mantani, Rojo, Rossia, EV in preparation

Impact of RGE and 1-loop matching  
Significant improvement of reach due to impact on 
EWPO at FCC

Preliminary

Durieux, McCullough, Salvioni arXiv:2209.00666

Preliminary

2-scalar EW quadruplet model2HDM in decoupling limit
UV matching in SMEFit: ter Hoeve, Magni, Rojo, Rossia, EV arXiv: 2309.04523



Eleni Vryonidou LHC EFT WG 2/12/24

How about particular UV complete models?

17

tre
e,

no
RG, HH

tre
e,

RG, HH

1L
, no

RG, no
HH

1L
, RG, no

HH

1L
, no

RG, HH

1L
, RG, HH

tre
e,

no
RG, HH

tre
e,

RG, HH

1L
, no

RG, no
HH

1L
, RG, no

HH

1L
, no

RG, HH

1L
, RG, HH

0

2

4

6

8

10

|∏
©
|

Custodial Non ° custodial

LEP + LHCRun°2 + HL ° LHC + FCC ° ee + FCC ° ee w/ 1-loop O'

ter Hoeve, Mantani, Rojo, Rossia, EV in preparation

Impact of RGE and 1-loop matching  
Significant improvement of reach due to impact on 
EWPO at FCC

Preliminary

Durieux, McCullough, Salvioni arXiv:2209.00666

Preliminary

2-scalar EW quadruplet model2HDM in decoupling limit
UV matching in SMEFit: ter Hoeve, Magni, Rojo, Rossia, EV arXiv: 2309.04523



Eleni Vryonidou LHC EFT WG 2/12/24

How about particular UV complete models?

17

tre
e,

no
RG, HH

tre
e,

RG, HH

1L
, no

RG, no
HH

1L
, RG, no

HH

1L
, no

RG, HH

1L
, RG, HH

tre
e,

no
RG, HH

tre
e,

RG, HH

1L
, no

RG, no
HH

1L
, RG, no

HH

1L
, no

RG, HH

1L
, RG, HH

0

2

4

6

8

10

|∏
©
|

Custodial Non ° custodial

LEP + LHCRun°2 + HL ° LHC + FCC ° ee + FCC ° ee w/ 1-loop O'

ter Hoeve, Mantani, Rojo, Rossia, EV in preparation

Impact of RGE and 1-loop matching  
Significant improvement of reach due to impact on 
EWPO at FCC

Preliminary

Durieux, McCullough, Salvioni arXiv:2209.00666

Preliminary

2-scalar EW quadruplet model2HDM in decoupling limit
UV matching in SMEFit: ter Hoeve, Magni, Rojo, Rossia, EV arXiv: 2309.04523



Eleni Vryonidou LHC EFT WG 2/12/24

Summary

18

Global fit results affected by the precision of EFT predictions


Aim to include more and more precise theory predictions in the fits


Inclusion of RGE effects in predictions is necessary, and can significantly affect 
constraints


Particularly important for poorly constrained operators and in the constraints on 
UV complete models



