

IHEP Site Report

On Behalf of IHEP-CC

Jingyan Shi

shijy@ihep.ac.cn

Outline

- 1 Brief Introduction of IHEP
- 2 Grid Sites in China

- 3 IHEP Grid Site
- 4 Summary

Brief Introduction to IHEP

- The largest fundamental research center in China with research fields:
 - Experimental Particle Physics
 - Theoretical Particle Physics
 - Astrophysics and cosmic-rays
 - Accelerator Technology and applications
 - Synchrotron radiation and applications
 - Nuclear analysis technique
 - Computing and Network application

HEP Related Projects

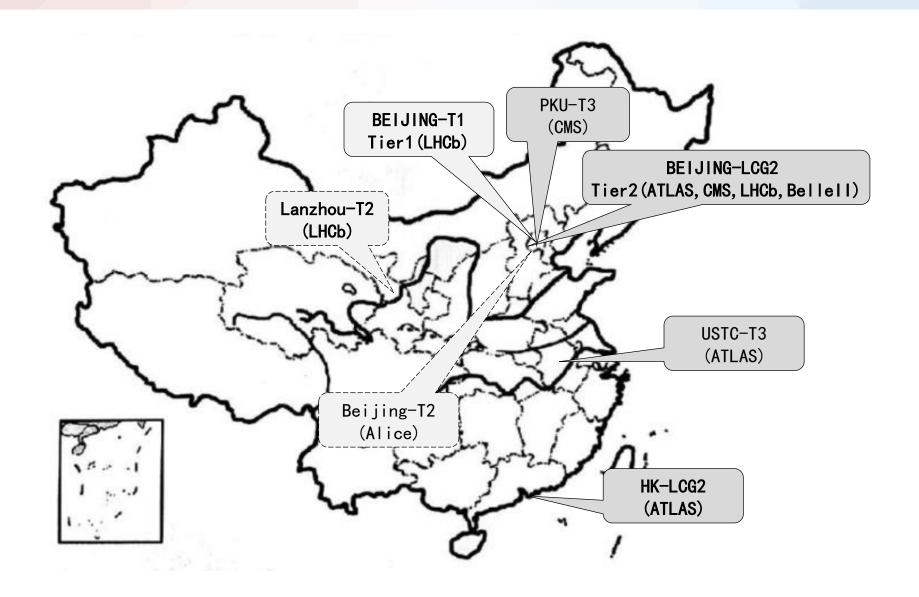
Accelerator based particle physics

Neutrino physics

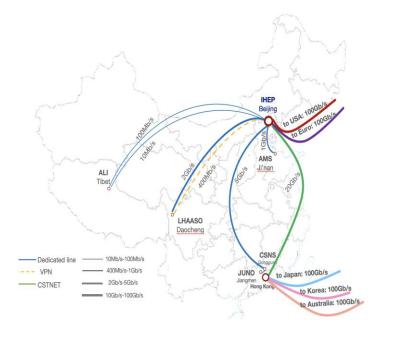
Cosmic ray and astrophysics experiments



Neutron Source and Synchrotron Radiation Facilities

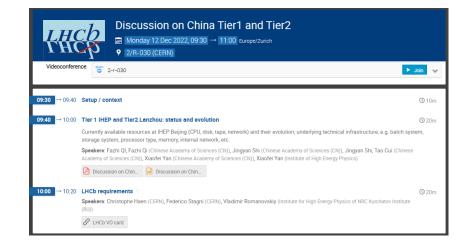

Facilities of IHEP

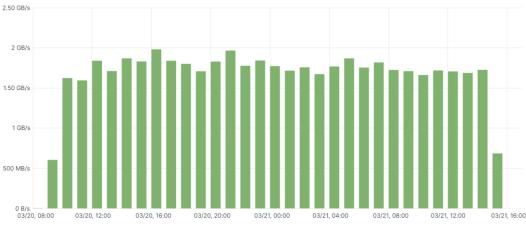
Overview of WLCG Sites in China



International Network of IHEP

- International network link upgraded to 100Gbps in 2023
 - With the help from CSTNET, GEANT and CERN
 - The data transfer test showed the peak performance between IHEP and Europe reach to 50Gbps
- Dedicated links between IHEP and domestic remote sites
 - HEPS-IHEP: 100 Gbps
 - CSNS-IHEP: 20 Gbps
 - LHAASO-IHEP: 2 Gbps(3 Gbps since Mar. 2024)
 - JUNO
 - Lanzhou Univ-IHEP: 2 Gbps
 - •





Construction and Resource of LHCb Beijing Tier-1 Site 5

Construction

- Oct. 2023: Chinese LHCb collaboration and CC-IHEP decided to construct Tier-1 Site for LHCb
- Dec. 2023: Discussed and received the approval from WLCG
- Feb. 2024: Construction completed
- Resource provided for LHCb Beijing Tier-1
 - Computing:
 - 40 worker nodes (Intel & AMD) with 3216 CPU cores: 67,000 HepScore
 - Disk storage
 - 4 sets of storage arrays provide 3.2 PB
 - Tape storage:
 - 4 drivers (IBM) and 170 tapes with 3PB
 - Network equipment and management server:
 - 6 switches, 1 router, 2 band cards and 10 servers
- First data challenge has been done in Mar. 2024
 - 189TB data was transferred into IHEP Site in ~2 days
 - Average transfer speed is about 1.55GB/s (Max is 1.98)
 - Transfer efficiency is close to 100%
- Has been in production in Jun. 2024

Network traffic of the first data challenge

Chinese Tier-2 Site Federation

• CPU: 4472 cores with 95,000 HepScore

• AMD 9654: 1152 Cores

Intel Golden 6338: 1280 Cores

• Intel Golden 6140: 1152 Cores

Intel E5-2680V3: 696 Cores

• Intel X5650: 192 Cores

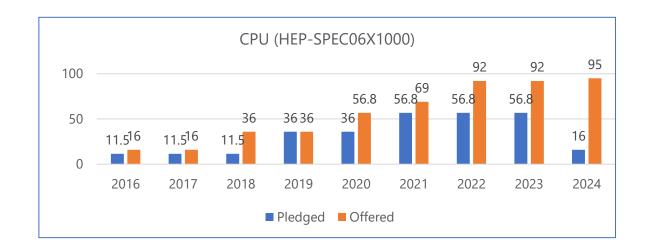
CE & Batch: HTCondorCE & HTCondor

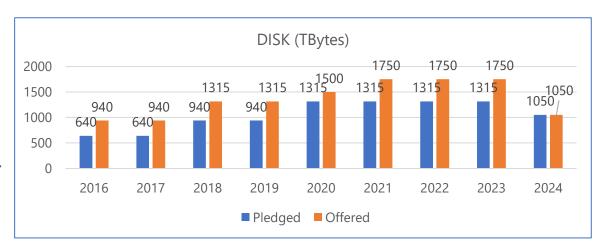
VO: ATLAS, CMS, LHCb, BELLEII, JUNO, CEPC

Storage: 1050TB

4TB * 24 slots with Raid 6, 5 Array boxes

DELL MD3860 8TB * 60 slots

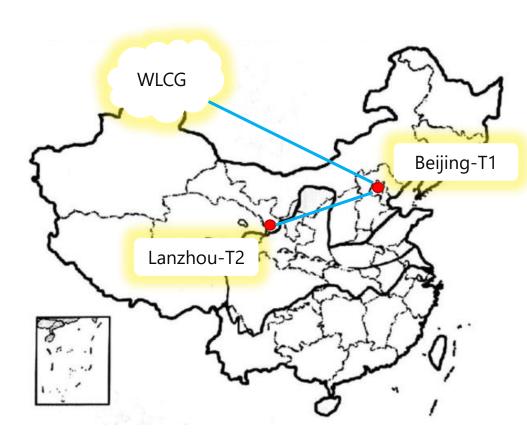

DELL ME4084 10TB * 42 slots


DELL ME4084 12TB * 84 slots

Got new budget for upgrading ATLAS and CMS Tier-2 in 2024

CPU: 60,000 HepScore

Disk storage: 2.5PB



Computing and Storage Pledge of BEIJING LCG Tier- 2

Construct New WLCG Tier-2 Site

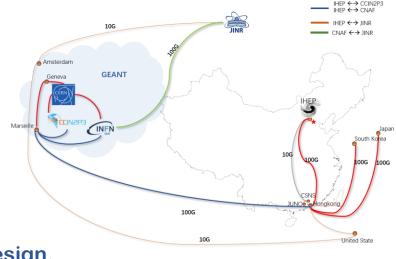
- LHCb Tier-2 site in Lanzhou
 - Construction started in Oct. 2023
 - ~3500 CPU cores with 77,000 HepScore
 - ~3PB Disk Storage
 - Dedicated 2 Gbps link between IHEP and Lanzhou Univ.
 - Software deployment started in Apr. 2024
 - Jointly maintained by CC-IHEP and Lanzhou Univ.
 - Hardware maintenance: Lanzhou Univ.
 - Software deployment and maintenance: CC-IHEP
- Alice Tier-2 at IHEP
 - Chinse Alice collaboration would like to build Tier-2
 - 1152 CPU cores with 30,600 HepScore
 - 840TB disk storage
 - CC-IHEP to be responsible for the overall maintenance

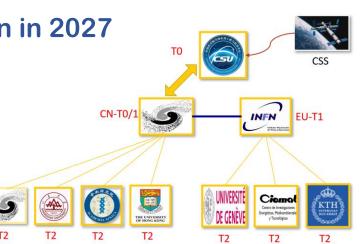
Lanzhou Univ. LHCb Tier-2 Site

ALICE Tier 2 Site at IHEP

- Hardware were ready in Mar. of 2024
 - 6 worker nodes: Fusion 1258H V7
 - 2 Servers: Dell PowerEdge R650
 - 1 Storage Array: Dell EMC Me484
- Status: expected to provide services in Sep. 2024
 - Vobox ready
 - CE: ~20,000 test jobs done
 - Network: LHCOPN routes ready
 - SE: File access permission under test & debug

Grid Computing of JUNO & HERD at IHEP


- JUNO: Jiangmen Underground Neutrino Observatory, will start production in 2024
 - IHEP site runs as Tier-0 and Tier-1
 - Storage: 8 PB by EOS, Lustre on disk, 4 PB by EOS-CTA on tape.
 - Computing: 180 KHS06 by HTCondor on x86, Slurm on ARM and GPU.
 - Network: 10Gbps(From JUNO-onsite to IHEP), 100Gbs(From IHEP to GEANT).
 - Grid computing platform: DIRAC system with IHEP-extensions.


JUNO Data Challenge 1:

- 12th ~ 26th Feb 2024, corresponding to WLCG DC24.
- Pressure transfer (500-1000 Mbps) with 4-8 times throughput than JUNO design.
 - IHEP -> CNAF/IN2P3 transfer worked well, almost no failure. IHEP->JINR is bad and always get stuck.

HERD: High Energy Radiation Detection Facility, will start production in 2027

- Storage requirements: 70 PB in 10 year.
- Computing requirement: 16000 CPUs in 10 years.
- Two Tier-1 sites will run at China and Europe
- Grid computing platform
 - DIRAC + dHTC (HTC&HPC) for computing, Rucio for data management

Summary

- CC-IHEP has good experiences to operate WLCG sites.
- IHEP grid site has great expansion in two years
 - Supports all the experiments of LHC
 - Bellell and several HEP experiments leading by IHEP
- Looking forward to more contributions