

Analysis Facility Development at Wisconsin CMS T2

T. Bose, D. Bradley, S. Dasu, A. Mohapatra, C. Seys, C. Vuosalo (HEP Computing Group)

Outline

- Infrastructure
- > Analysis with Run1, Run2, and Run3 data
- HL-LHC Computing Resource Needs for CMS
- Expected Analysis model for Run4 and beyond
- Analysis Facility Setup at Wisconsin
- > Summary

- ✓ Became a CMS dedicated T2 computing facility in 2005
- ✓ 3 machine rooms, 17 racks full of hardware
- ✓ Enough power supply (650kW) and cooling is provided by the campus

✓ All nodes provide compute and storage services

- File systems, authentication, & proxy service
 - AFS, NFS, CVMFS, Kerberos, Frontier/Squid
- Job batch system
 - HTCondor
- Open Science Grid (OSG) software stack
 - HTCondor-CE and various middleware
- Storage and Data Access
 - Hadoop (hdfs) and XRootD
- Cluster management & monitoring
 - Puppet, Local Yum Repo(Ceph), Ganeti, Nagios/Icinga, Prometheus, Grafana

IPv4 and IPv6 Network

Analysis of Run1, Run2 and Run3 data

- ➤ Data formats: RAW → RECO → AOD (Run1, 480kb/evt) → MiniAOD (Run2, 50kb/evt) → NanoAOD (Run3, 1-2kb/evt). Centrally produced.
- ➢ Mini/NanoAOD → suitable user ntuples using analysis support tools i.e. CRAB etc.
- ➤ Ntuple processing with user code at the T2/T3s → output for statistical analysis and plots → physics publication.
- MiniAOD and NanoAOD formats significantly reduced storage and cpu resource usage, and user ntuple production with overlapping information.

CMS Remote Analysis Builder (CRAB)

- CRAB was designed by CMS offline and computing support group.
- It allowed physicists to transparently access the global resources of the WLHC Computing Grid.
- CRAB2 was used during LHC Run 1 (2009-2012). Much improved CRAB3 was used during LHC Run 2 (2015-2018).
- CRAB2 limitations experienced by Wisconsin users prompted us (at Wisconsin T2) to develop a less complex analysis support tool (called Farmout).

- Developed by Wisconsin CMS computing support group – used primarily by Wisconsin T2 affiliated users.
- Supported users with private MC production and data analysis using Wisconsin T2 and campus computing resources. Output is stored in the T2 storage.
- ✓ Input data was accessible either from the local CMS T2 storage or global CMS T1/T2 sites via XRootD services.
- ✓ Became popular due to efficient and timely user support from local experts.

- Analysis scenario is expected to be different for Run4 and beyond due to significantly high data volume and the large computing resources needed to process it for physics.
- A combination of much needed hardware resource provisioning, significant software improvements, and innovative analysis methods will be the key.

HL-LHC Computing Resource Needs for CMS

Higher Intensity Proton-50000 Total CPU[kHS06-years] CMS Public Total CPU **CPU** proton collisions, and 2022 Estimates No R&D improvements Weighted probable scenario 10 to 20% annual resource increase new CMS detector with more channels 20000 \geq 3x more events to be processed each year \rightarrow 2029 2031 2025 2027 2033 2035 2021 2023 Year 150 Billion events 1750 **CMS** Public Disk Total Disk 1500 2022 Estimates No R&D improvements Total Disk[PB] Weighted probable scenario 10 to 20% annual resource increase

250

0<u>___</u> 2021

2023

2025

2027

2029

Year

2031

2033

2035

 \succ 5x increase in event size \rightarrow disk storage needs will reach 0.5 exabyte by 2030

HL-LHC Computing Needs for CMS

2037

2037

> Hardware

• Maintain scalability for computing facilities allowed within flat budget scenario.

Software

- Modernize Physics Software and Improve Algorithms using ML/AI, GPUs, accelerators, etc.
- Build Infrastructure to produce, archive, store, transfer, and provide fast access to Exabyte-Scale Datasets.
- Transform the Scientific Data Analysis Process.
- Seize on Industry Advances in Data Science i.e. Use Columnar Data Model and Tools for Analysis.
- Prepare Highly Efficient Analysis Facilities.

Expected Analysis Model for Run4 and Beyond

- Switch to fast columnar data processing using highly efficient scientific python packages used in Data Science Industry.
- Translate NanoAOD root branches into awkward arrays and massively parallelize array processing to scale.
- Perform analysis quickly, correctly, and efficiently using the available computing resources.
- (Re)produce physics output in hours instead of weeks by eliminating intermediate steps i.e. skimming etc.

✓ Use "Columnar Object Framework For Effective Analysis (Coffea)"

- Coffea
 - A user interface for processing CMS NanoAOD data
 - Makes use of other packages in the scientific python ecosystem for efficient data processing
 - Works with multiple Task Schedulers

Ajit Mohapatra, ATCF8@TIFR, Mumbai, India, 2 - 4 Sep 2024

- Dask is a python library for parallel computing
- It scales python code from multi-core local machines to large distributed clusters in the cloud
- Suitable for processing larger-than-memory datasets using Task Graphs

Analysis Facility Setup at Wisconsin

Ajit Mohapatra, ATCF8@TIFR, Mumbai, India, 2 - 4 Sep 2024

- ➢ Setup 1 → Analysis with Coffea + Dask using python scripts through a SSH terminal (traditional method)
- ➢ Setup 2 → Analysis with Coffea + Dask through Jupyter notebooks managed by a multiuser Jupyterhub installation

Welcome to the Analysis Facility at the University of Wisconsin - Madison!

The Analysis Facility gives users access to the UW Tier-2 computing cluster, and is configured around the analysis tools and concepts of coffea. So, it is best suited for users looking for access to coffea and associated tools and/or distributed computing resources.

Analysis with Jupyter + Coffea + Dask

➤ Jupyterhub → User home directories (AFS), temp dirs (NFS), storage (HDFS), and authentication (Kerberos).

Analysis with Jupyter + Coffea + Dask

+ To avoid problems, Condor should be set to run Dask and Coffea in the following container as of 2023-12-05: docker.io/coffeateam/coffea-dask-almalinux9:2024.5.0-py3.11 . + To obtain a voms proxy, add '-vomses /etc/vomses' to the voms-proxy-init command.

Sign in	
Username:	
Password:	
Sign in	

The jupyterhub runs on a 128-core node (serves as the local dask cluster)

THE UNIVERSITY

Analysis using Jupyter + Coffea + Dask

Workers

Benchmarking with CMS Open Data Analysis

- - ttbar \rightarrow hadronic
 - single top
 - W+jets
- \triangleright Dataset size \rightarrow 1.5 TB

- Thanks to our grad student "Ryan Simeon" for this work !
- > # of files \rightarrow 832 (distributed across 32 sites)
- > # of events $\rightarrow \sim 800$ M
- > Max # of concurrent running jobs \rightarrow 180

- How long did it take to run the analysis?
 - ~45 minutes
- Where did the files come from?
 - 32 sites (max)
- Input files read reliability/success rate ?
 - ~95%
- What kinds of error messages encounted ?
 - Various types (next slide)
- Run time with files read from Wisconsin Xcache → ~60 minutes. Need to understand the reason for the slowness and find remedy.

823 Total Files

- Pie wedges proportional to number of files from that site
- Number in parentheses is file read failure rate from that site
- Sites grouped in "other" host < 3% of total files and have zero failures

Files per Site Labeling: Site (Failure Rate per Site)

Ajit Mohapatra, ATCF8@TIFR, Mumbai, India, 2 - 4 Sep 2024

Error Messages linked to Sites

- Failed to open file: [ERROR] Operation expired -
- File did not open properly: [ERROR] Operation expired -
 - Failed to open file: [ERROR] Socket timeout -
- Failed to open file: [ERROR] Server responded with an error: [3005] User cms001 has hit the limit of 16 open files
 - File stat request failed: [ERROR] Operation expired -
 - File did not open properly: [ERROR] Socket timeout -
 - File stat request failed: [ERROR] Socket timeout -
 - Bytes failed to read from open file: [ERROR] Operation expired -
- File did not open properly: [ERROR] Server responded with an error: [3005] User cms001 has hit the limit of 16 open files

msg

- ✓ An analysis facility setup at Wisconsin is in progress.
- ✓ Running coffea analysis through interactive SSH terminal and through jupyter notebook are supported.
- ✓ Users are free to choose the method that's suitable for them.
- Jupyter notebook way is gaining popularity among new users starting data analysis.
- ✓ Regular tutorials offered by CMS experts related to coffea framework for analysis has been highly beneficial for CMS students, postdocs, and others interested in these tools.
- ✓ Excellent documentation about analysis facility and efficient user support must be maintained.
- ✓ Integration of Kubernetes as the setup matures.

Questions / Comments ?

Event Loop \rightarrow Columnar

• Event Loop: Inefficient, Slow and Expensive Columnar processing: Orders of magnitude faster

Ajit Mohapatra, ATCF8@TIFR, Mumbai, India, 2 - 4 Sep 2024

Scientific Python Ecosystem

CMS Run 1 Data Flow

CMS Run 2 Data Flow

