
DAGMan
HTCondor’s Workflow Manager

Rachel Lombardi
Research Computing Facilitator

Center for High Throughput Computing

September 2024

1

Scenario

You have two jobs to run: job A and job B.

You have two corresponding submit files: A.sub and B.sub

You want job B to run only after job A has completed successfully

● To determine success, need to check the output of job A

A
(A.sub)

B
(B.sub)

B
is dependent on

A
2

continue only if
successful

How?

HTCondor offers you the services of the

Directed Acyclic Graph Manager → DAGMan
to automate the submission of jobs (with dependencies)

3

The Directed Acyclic Graph Manager (DAGMan) manages the
placement of lists of jobs represented by “nodes” that are

connected by “edges”

How?

A
(A.sub)

B
(B.sub)

B
is dependent on

A

4

continue only if
successful

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

my-first.dag

5

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

JOB A A.sub
JOB B B.sub

my-first.dag

Syntax

JOB <node_name> <submit_file_name>

6

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

JOB A A.sub
JOB B B.sub

my-first.dag

Syntax

JOB <node_name> <submit_file_name>

A single submit file can
queue a list of jobs*

7*if 1 job fails, then the whole list is removed from the queue

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

JOB A A.sub
JOB B B.sub

PARENT A CHILD B

my-first.dag

Syntax

 PARENT <node_name> CHILD <node_name>

depends on

8

Create the DAG input file

In a file, you need to

(1) declare the job submissions and (2) declare the dependencies.

JOB A A.sub
JOB B B.sub

PARENT A CHILD B

my-first.dag

9

Create the DAG input file

How can we tell if job A completed successfully?

● To determine success, need to check the output of job A using A-check.sh

JOB A A.sub
JOB B B.sub

PARENT A CHILD B

my-first.dag

10

Create the DAG input file

How can we tell if job A completed successfully?

● To determine success, need to check the output of job A using A-check.sh

JOB A A.sub
SCRIPT POST A A-check.sh
JOB B B.sub

PARENT A CHILD B

my-first.dag

Syntax

 SCRIPT POST <node_name> <script_name>

*order of lines does not actually matter

11

How can we tell if job A completed successfully?

● To determine success, need to check the output of job A using A-check.sh

A
(A.sub)

B
(B.sub)

successful only if
A-check.sh is successful

12

Create the DAG input file

continue only if
successful

Submitting and Monitoring the DAG

13

Submit the DAG

By default, DAGMan expects the submit files A.sub and B.sub are in the same
directory as my-first.dag, along with A-check.sh

DAG_simple/

|-- my-first.dag

|-- A.sub

|-- A-check.sh

|-- B.sub

Basic Working Directory

14

Submit the DAG

By default, DAGMan expects the submit files A.sub and B.sub are in the same
directory as my-first.dag, along with A-check.sh

DAG_simple/

|-- my-first.dag

|-- A.sub

|-- A-check.sh

|-- B.sub

Basic Working Directory

It is possible to
create other

directory structures,
but for now we will
use this simple, flat

organization.

15

Submit the DAG

Command to submit, or place, the DAGMan job on the Access Point:

This then starts the DAG node scheduler job, which we can see in the queue:

 condor_submit_dag <dag_description_file>

 condor_submit_dag my-first.dag

[user@ap40 DAG_simple]$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 09/01/24 11:26:51
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
user my-first.dag+562265 09/01 11:26 _ _ 1 2 562279.0

16

Monitor the DAG

This then starts the DAG node scheduler job, which we can see in the queue:

[user@ap40 DAG_simple]$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 09/01/24 11:26:51
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
user my-first.dag+562265 09/01 11:26 _ _ 1 2 562279.0

BATCH_NAME for the DAGMan job is the name of the input description file,
my-first.dag, plus the Job ID of the scheduler job (562265)

17

Monitor the DAG

This then starts the DAG node scheduler job, which we can see in the queue:

[user@ap40 DAG_simple]$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 09/01/24 11:26:51
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
user my-first.dag+562265 09/01 11:26 _ _ 1 2 562279.0

The total number of jobs for my-first.dag+562265 corresponds to the
total number of nodes in the DAG (2)

18

Monitor the DAG

This then starts the DAG node scheduler job, which we can see in the queue:

[user@ap40 DAG_simple]$ condor_q

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 09/01/24 11:26:51
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
user my-first.dag+562265 09/01 11:26 _ _ 1 2 562279.0

Only 1 node is listed as "Idle", meaning that DAGMan has only
materialized 1 job so far. This is consistent with the fact that node A has to
complete before DAGMan can submit the job for node B.

19

Monitor the DAG
For more detailed monitoring:

[user@ap40 DAG_simple]$ condor_q -dag -nob

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 12/14/23 11:27:03
 ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
562265.0 user 09/01 11:26 0+00:00:37 R 0 0.5 condor_dagman
562279.0 |-A 09/01 11:26 0+00:00:00 I 0 0.0 A.sh

First entry: dag node scheduler job created upon submission

20

Monitor the DAG
For more detailed monitoring:

[user@ap40 DAG_simple]$ condor_q -dag -nob

-- Schedd: ap40.uw.osg-htc.org : <128.105.68.92:9618?... @ 12/14/23 11:27:03
 ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
562265.0 user 09/01 11:26 0+00:00:37 R 0 0.5 condor_dagman
562279.0 |-A 09/01 11:26 0+00:00:00 I 0 0.0 A.sh

Additional entries: correspond to nodes whose jobs are currently in the
queue.

● Reminder: Nodes that have not yet been submitted by DAGMan or that
have completed and thus left the queue will not show up in condor_q
output.

21

Additional Tools to Monitor your Workflow

DAGMan will produce helpful files to learn about and troubleshoot your
workflow.

[user@ap40 DAG_simple]$ condor_submit_dag my-first.dag

File for submitting this DAG to HTCondor : my-first.dag.condor.sub
Log of DAGMan debugging messages : my-first.dag.dagman.out
Log of HTCondor library output : my-first.dag.lib.out
Log of HTCondor library error messages : my-first.dag.lib.err
Log of the life of condor_dagman itself : my-first.dag.dagman.log

Submitting job(s).
1 job(s) submitted to cluster 562265.

22

Overview of Process

23

JOB A A.sub
SCRIPT POST A A-check.sh
JOB B B.sub

PARENT A CHILD B

my-first.dag

1. condor_submit_dag
2. DAG node scheduler job starts
3. A.sub executes → completes
4. A-check.sh execute → completes
5. B.sub executes → completes
6. DAG node scheduler job completes

PRE/POST Scripts
• All DAGMan PRE/POST scripts run on the Access Point and not on an

Execution Point Slot.
• Scripts provide a way to perform tasks at key points in a node’s lifetime.

○ E.g., checking if files exist, creating directories, consolidating files
• Should be lightweight (low computational) programs/tasks

PRE Script

JOB

POST Script

Node

DAGMan Node Scripts Documentation 24

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-scripts.html

Overview of Process

25

JOB A A.sub
SCRIPT POST A A-check.sh
JOB B B.sub

PARENT A CHILD B

my-first.dag

1. condor_submit_dag
2. DAG node scheduler job starts
3. A.sub executes → completes
4. check-A.sh execute → completes
5. B.sub executes → completes
6. DAG node scheduler job completes

Throughout this workflow, DAGMan is
monitoring for failures/successes

What is Considered a Failure

● A non-zero exit code in the PRE script, JOB, or POST script is considered
a failure

● DAGMan will continue running work until can no longer progress

PRE Script

JOB

POST Script

Node

26

Overall
DAGMan will do as much work as it can until

completion (“success”) or failure

27

A Failed DAG
● Once a node has failed and no more progress in the DAG can be made,

DAGMan will produce a rescue file and exit.
○ Rescue file is named <dag_description_file>.rescue001

■ “001” increments for each new rescue file
○ Records which NODEs have completed successfully

■ does not contain the actual DAG structure

Rescue DAGs Documentation
28

A.sub B.sub check-A.sh
my-first.dag my.-first.dag.condor.sub my.dag.dagman.log
my-first.dag.dagman.out my-first.dag.lib.err my-first.dag.lib.out
my-first.dag.metrics my-first.dag.nodes.logmy-first.dag.rescue001
(other job files)

DAG_simple/

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-resubmit-failed.html#the-rescue-dag

Dealing with a Failed DAG
● Search for issue in <dag filename>.dagman.out and job standard

error/output files
● Once issue is fixed, resubmit with condor_submit_dag

○ Rescue file will be automatically detected and progress will resume from
the point it left off

Rescue DAGs Documentation
29

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-resubmit-failed.html#the-rescue-dag

Many DAGs

30

Many DAGs

Scenario: Now you have to run the A→B workflow many times in parallel

How to accomplish?

31

A1 B1

A2 B2

AN BN

⋮

Many DAGs … or One Big DAG

Write a script that generates your DAG description file* for you
(and the needed files)

32*for now. We are working to develop better of ways of handling this scenario.

JOB A A.sub
SCRIPT POST A A-check.sh
JOB B B.sub

PARENT A CHILD B

my-first.dag

Many DAGs … or One Big DAG

Write a script that generates your DAG description file* for you
(and the needed files)

33*for now. We are working to develop better of ways of handling this scenario.

JOB A A.sub
SCRIPT POST A A-check.sh
JOB B B.sub

PARENT A CHILD B

my-first.dag

JOB A1 A1.sub
SCRIPT POST A1 A1-check.sh
JOB B1 B1.sub
PARENT A1 CHILD B1

JOB A2 A2.sub
SCRIPT POST A2 A2-check.sh
JOB B2 B2.sub
PARENT A2 CHILD B2

⋮

my-big.dag

python
bash

…

One Big DAG

Once ready, do a single condor_submit_dag
command

The DAG node scheduler job will manage all of the
submissions while keeping track of the
dependencies

34

JOB A1 A1.sub
SCRIPT POST A1 A1-check.sh
JOB B1 B1.sub
PARENT A1 CHILD B1

JOB A2 A2.sub
SCRIPT POST A2 A2-check.sh
JOB B2 B2.sub
PARENT A2 CHILD B2

⋮

my-big.dag

One Big DAG - What If There Is a Failure?

Let's say that A1 job finishes and A-check.sh finds
that the output of A1 is incorrect, and that A1 has
failed. What happens?

35

A1 B1

A2 B2

AN BN

⋮

X

? ?

?

? ?

X = Failed
? = Not known yet

One Big DAG - What If There Is a Failure?

Let's say that A1 job finishes and A-check.sh finds
that the output of A1 is incorrect, and that A1 has
failed. What happens?

● DAGMan does as much work as it can, then
creates a Rescue DAG.

● While B1 won't be started, the DAG node
scheduler will keep submitting and managing the
other AN & BN jobs until there is no more work.

36

A1 B1

A2 B2

AN BN

⋮

X

S ?

Ø

S ?

S = Submitted
X = Failed
Ø = Will not be submitted
? = Not known yet

One Big DAG - What If There Is a Failure?

Let's say that A1 job finishes and A-check.sh finds that
the output of A1 is incorrect, and that A1 has failed.
What happens?

● The Rescue DAG is used automatically the
next time you run condor_submit_dag, and
the DAG node scheduler job will only submit
the unsuccessful nodes.

○ If all but A1→B1 completed successfully, then when the
Rescue DAG is submitted, only the A1→B1 will be
attempted.

37

A1 B1

A2 B2

AN BN

⋮

S

✔ ✔

?

✔ ✔

S = Submitted
? = Not known yet
✔= Successful completion

Reuse files in your DAG

In the input description file with many
DAGs, there were a lot of similar files:
A{x}.sub, A{x}-check.sh, B{x}.sub

38

JOB A1 A1.sub
SCRIPT POST A1 A1-check.sh
JOB B1 B1.sub
PARENT A1 CHILD B1

JOB A2 A2.sub
SCRIPT POST A2 A2-check.sh
JOB B2 B2.sub
PARENT A2 CHILD B2

⋮

my-big.dag

Reuse files in your DAG

In the big DAG, there were a lot of similar
files: A{x}.sub, A{x}-check.sh, B{x}.sub

Instead of A1.sub, A2.sub, … AN.sub, can
use A.sub

39

JOB A1 A.sub
SCRIPT POST A1 A1-check.sh
JOB B1 B1.sub
PARENT A1 CHILD B1

JOB A2 A.sub
SCRIPT POST A2 A2-check.sh
JOB B2 B2.sub
PARENT A2 CHILD B2

⋮

my-big.dag

Reuse files in your DAG

In the big DAG, there were a lot of similar
files: A{x}.sub, A{x}-check.sh, B{x}.sub

Instead of A1.sub, A2.sub, … AN.sub, can
use A.sub

Then pass the number to the submit file
with the VARS command

40

JOB A1 A.sub
VARS A1 number=1
SCRIPT POST A1 A1-check.sh
JOB B1 B1.sub
PARENT A1 CHILD B1

JOB A2 A.sub
VARS A2 number=2
SCRIPT POST A2 A2-check.sh
JOB B2 B2.sub
PARENT A2 CHILD B2

⋮

my-big.dag

Reuse files in your DAG

In the big DAG, there were a lot of similar
files: A{x}.sub, A{x}-check.sh, B{x}.sub

Instead of A1.sub, A2.sub, … AN.sub, can
use A.sub

Then pass the number to the submit file
with the VARS command

41

JOB A1 A.sub
VARS A1 number=1
SCRIPT POST A1 A1-check.sh
JOB B1 B1.sub
PARENT A1 CHILD B1

JOB A2 A.sub
VARS A2 number=2
SCRIPT POST A2 A2-check.sh
JOB B2 B2.sub
PARENT A2 CHILD B2

⋮

my-big.dag

DAG Description File Syntax
VARS <node_name> <variable>=<value>

Submit File Syntax
arguments = $(<variable>)

Reuse files in your DAG

In the big DAG, there were a lot of similar
files: A{x}.sub, A{x}-check.sh, B{x}.sub

Instead of A1.sub, A2.sub, … AN.sub, can
use A.sub

Then pass the number to the submit file
with the VARS command

Can repeat for B.sub

42

JOB A1 A.sub
VARS A1 number=1
SCRIPT POST A1 A1-check.sh
JOB B1 B.sub
VARS B1 number=1
PARENT A1 CHILD B1

JOB A2 A.sub
VARS A2 number=2
SCRIPT POST A2 A2-check.sh
JOB B2 B.sub
VARS B1 number=2
PARENT A2 CHILD B2

⋮

my-big.dag*can achieve similar outcome for A-check.sh (not using VARS though)

Learn More

DAGMan Resources

● Beginner DAGMan Resources:
○ https://www.youtube.com/watch?v=OuIBf6x24r0&pp=ygUGZGFnbWFu
○ https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-workflows/
○ https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-simple-exampl

e/
● Intermediate DAGMan Resources:

○ https://portal.osg-htc.org/documentation/support_and_training/training/osgusertraining/
○ https://github.com/OSGConnect/tutorial-dagman-intermediate

● DAGMan Core Documentation
○ https://htcondor.readthedocs.io/en/latest/automated-workflows/index.html

43

https://www.youtube.com/watch?v=OuIBf6x24r0&pp=ygUGZGFnbWFu
https://portal.osg-htc.org/documentation/htc_workloads/automated_workflows/dagman-workflows/
https://portal.osg-htc.org/documentation/support_and_training/training/osgusertraining/
https://github.com/OSGConnect/tutorial-dagman-intermediate

Questions?

This project is supported by the National Science Foundation under
Cooperative Agreements OAC-2331480. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

44

