

IDEA vs. CLD Detector Card Comparison – Effects of Reducing Tracker Hit Requirement

Mark Larson, Louise Skinnari

Northeastern University

05/02/2024

Based on work by Magdalena Vande Voorde, Giulia Ripellino, Axel Gallén, Rebeca Gonzalez Suarez, link to recent talk

Recap from last talk

Signal Process

• Targeting **240 GeV**, *Zh* production stage w/ signal process:

 $e^+e^- \rightarrow Z h$ with $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$ and $h \rightarrow ss \rightarrow b\bar{b}b\bar{b}$

- This provides following experimental signatures:
 - **Reconstructed Z boson** from e^+e^- or $\mu^+\mu^-$ pairs
 - **Displaced vertices** from b pairs from long-lived scalar decay

Signal Generation and Selection

- Generated new CLD samples with <u>CLD-like Delphes Card</u> (<u>IDEA</u> card w/ tracker geometry replaced by <u>CLD</u> tracker geometry), IDEA samples (from previous analysis) used <u>Winter2023 IDEA Delphes card</u>
 - Using MadGraph v3.5.3 (3.4.2 for IDEA samples) + Pythia8 + Delphes
 - 6 separate samples generated based on varied scalar mass, mixing angle

Mass of Scalar m_S [GeV]	$\begin{array}{c} \text{Mixing angle} \\ \text{sin } \theta \end{array}$	Mean proper lifetime $c\tau$ [mm]
20	1×10^{-5}	3.4
20	1×10^{-6}	341.7
20	1×10^{-7}	34167.0
60	1×10^{-5}	0.9
60	1×10^{-6}	87.7
60	1×10^{-7}	8769.1

- Event selection (from previous analysis):
 - Note: DV cut rejects all background events from WW, ZZ, ZH processes

	WW	ZZ	ZH
Before selection	1.0	1.0	1.0
Pre-selection	0.131	0.026	0.059
$ ~70 < m_{ll} < 110 { m ~GeV} $	0.006	0.086	0.047
$n_{DVs} \ge 2$	0.0	0.0	0.0

	Selection
Pre-selection	≥ 2 oppositely charged electrons or muons
Z boson tag	$70 < m_{ll} < 110 { m GeV}$
Multiplicity of DVs	$n_{DVs} \ge 2$

IDEA, CLD Tracking Differences

IDEA Drift Tube Geometry

CLD Tracker Geometry

Preliminary IDEA vs. CLD Results

• Applying cuts yielded following efficiencies for IDEA and CLD samples:

			00 G TI 1 0	
		20 GeV, 1e-5	20 GeV, 1e-6	20 GeV, 1e-7
	Before Selection	1.0	1.0	1.0
	Pre-selection	0.957	0.950	0.949
	$70 < m_{ll} < 110 \ {\rm GeV}$	0.888	0.888	0.900
IDEA:	$N_{DVs} \ge 2$	0.091	0.672	0.014
		60 GeV, 1e-5	60 GeV, 1e-6	60 GeV, 1e-7
(from previous	Before Selection	1.0	1.0	1.0
analysis by Magda	Pre-selection	0.957	0.957	0.951
Vande Voorde, et al.)	$70 < m_{ll} < 110 \ {\rm GeV}$	0.894	0.895	0.896
	$N_{DVs} \ge 2$	0.0002	0.672	0.398

CLD:

Signal Cut flow efficiencies:

Signal Cut flow efficiencies:

	20 GeV, 1e-5	20 GeV, 1e-6	20 GeV, 1e-7
Before Selection	1.0	1.0	1.0
Pre-selection	0.955	0.952	0.952
$70 < m_{ll} < 110 \text{ GeV}$	0.891	0.896	0.903
$N_{DVs} \ge 2$	0.092	0.109	0.002
	60 GeV, 1e-5	$60 {\rm GeV}, 1e-6$	60 GeV, 1e-7
Before Selection	1.0	1.0	1.0
Pre-selection	0.958	0.958	0.952
$70 < m_{ll} < 110 \text{ GeV}$	0.895	0.897	0.899
$N_{DVs} \ge 2$	0.0002	0.654	0.0502

Events selected:

20 GeV, 1e-5 20 GeV, 1e-6 20 GeV, 1e-6 37.1 \pm 0.453 20 GeV, 1e-7 60 GeV, 1e-5 60 GeV, 1e-6 10.96 \pm 0.167 60 CeV 1e 7 60 GeV 1e 7 60 GeV, 1e 6 60 GeV 1e 7 60	$m_s, \sin heta$	$n_DVs \geq 2$
$00 \text{ GeV}, 10-7 0.49 \pm 0.103$	20 GeV, 1e-5 20 GeV, 1e-6 20 GeV, 1e-7 60 GeV, 1e-5 60 GeV, 1e-6 60 GeV, 1e-7	5.0 ± 0.166 37.1 ± 0.453 0.8 ± 0.067 0.0033 ± 0.0023 10.96 ± 0.167 6.49 ± 0.103

Events selected:

		Mean proper
$m_s, sin heta$	$n_{\rm DVs} \ge 2$	lifetime $c\tau$ [mm]
20 GeV, 1e-5	5.10 ± 0.167	3.4
20 GeV, 1e-6	6.02 ± 0.182	341.7
20 GeV, 1e-7	0.11 ± 0.025	34167.0
$60 {\rm GeV}, 1e-5$	0.003 ± 0.0023	0.9
$60 {\rm GeV}, 1e-6$	10.67 ± 0.132	87.7
$60~{\rm GeV},$ 1e-7	0.819 ± 0.036	8769.1

Note: given 1.46×10^6 Zh events

Tracks per Event: IDEA vs. CLD

Longer decay length CLD sample saw reduction in # reco. tracks, shorter decay length CLD sample saw similar # reco. tracks

 $m_s = 20 \text{ GeV}, \sin(\theta) = 1e - 6, c\tau = 341.7 \text{ mm}$ sample saw significant decline in sensitivity $m_s = 20 \text{ GeV}, \sin(\theta) = 1e - 5, c\tau = 3.4 \text{ mm}$ sample saw similar sensitivity

Total Tracker Hits:

 $m_s = 20 \text{ GeV}, \sin(\theta) = 1e - 6, c\tau = 341.7 \text{ mm}$ sample (10,000 events)

Tracker Hit Requirement

• CLD detector card contains a <u>minimum number of hits to accept a track</u>

minimum number of hits to accept a track
set NMinHits 6

- Due to CLD geometry, this high requirement means many displaced tracks with vertex after first layer will not be accepted
- Want to see how changing this to 5 or 4 affects tracking performance → DV reconstruction → signal sensitivity
- Regenerated (using same unweighted events) CLD samples for each signal point using min. number of hits = 4, 5
 - Will show results for two most interesting signal points: $c\tau = 87.7 \text{ mm}, 341.7 \text{ mm}$

Trackers Hits: $c\tau = 87.7 mm (m_s = 60 \text{ GeV}, \sin(\theta) = 10^{-6})$

10

Tracks per Event: $c\tau = 87.7 mm$

DVs per Event: $c\tau = 87.7 mm$

Trackers Hits: $c\tau = 341.7 mm (m_s = 20 GeV, sin(\theta) = 10^{-6})$

Tracks per Event: $c\tau = 341.7 mm$

Num. Reco. Tracks

DVs per Event: $c\tau = 341.7 mm$

Signal Sensitivities

Final Cut Efficiencies:

$N_{DVs} \ge 2$ Efficiencies	20 GeV, 1e-5	20 GeV, 1e-6	20 GeV, 1e-7	60 GeV, 1e-5	60 GeV, 1e-6	60 GeV, 1e-7
IDEA	0.091	0.672	0.014	0.0002	0.672	0.398
CLD (min. hits $= 6$)	0.092	0.109	0.002	0.0002	0.654	0.0502
CLD (min. hits $= 5$)	0.094	0.293	0.0042	0.0003	0.684	0.123
CLD (min. hits $= 4$)	0.096	0.441	0.0056	0.0002	0.687	0.183

Final Events Selected:

$N_{DVs} \ge 2$ Events	20 GeV, 1e-5	20 GeV, 1e-6	20 GeV, 1e-7	60 GeV, 1e-5	60 GeV, 1e-6	60 GeV, 1e-7
IDEA	5.02	37.09	0.77	0.003	10.97	6.50
CLD (min. hits $= 6$)	5.08	6.02	0.11	0.003	10.67	0.82
CLD (min. hits $= 5$)	5.19	16.17	0.23	0.005	11.16	2.01
CLD (min. hits $= 4$)	5.30	24.34	0.31	0.003	11.21	2.99

Sensitive (> 3 events) Not sensitive (< 3 events)

Summary & Future Work

- Track and DV reconstruction significantly improved for min. hits = 4,
 5 samples, especially for longer mean decay time samples
- Significant improvement in signal yield for all samples, relative to original CLD samples
 - Expected events even slightly exceeding IDEA for 2 samples
 - Sensitivity not regained for $c\tau = 8770 \text{ }mm$ sample that lost with original CLD results (though just on border at 2.99 events for min. hits = 4)
 - Expected events increased by 4 times relative to original CLD results for $c\tau = 342 \text{ mm}$, min. hits = 4
- What further studies / track parameters do we want to do to investigate this issue with DV reconstruction in CLD?

Incorporating Hadronic Decays of Z to Signal Update

Sample Generation and Reconstruction

- Regenerated same signal processes, but with $Z \rightarrow q\bar{q}, q = u, d, c, s, b$ with MadGraph v3.5.4, Winter2023 IDEA card
- Will use Winter2023 backgrounds:
 - $\cdot\,$ WW, ZZ inclusive decays
 - * ZH | $Z \rightarrow q \bar{q}, H \rightarrow WW, b \bar{b}$
- Added jet parameters to Reco. Analysis Script:
 - Jet energy, momentum, θ, φ, η , charge
 - Sum of jet energies (motivated by fully hadronic ZH analysis cuts)
 - Number of reco. jets
 - This parameter seems inconsistent with what we expect (and hence so does jet energy, etc.)

Number of Jets Discrepancies

• For hadronic decays expect 6 jets, for leptonic decays expect 4 (if both scalar particles decay within detector and have 100% reco. efficiency)

$c\tau = 34000 \, mm, m_s = 20 \, GeV, \sin(\theta) = 10^{-7} \, \text{Sample}$

21

Note: looking at # reco. electrons, muons supports Z is indeed decaying leptonically and hadronically respectively

Delphes Jet Algorithm

- Seems that each electron, muon is being reconstructed as a jet, and 4 b's are being reconstructed in total as only 1 jet
- Winter 2023 IDEA card used uses <u>exclusive</u> <u>Durham- k_t algorithm</u> in n jets = 2 mode
- Does anyone know what may be going on here or whom I could ask about this?
 - Need to fix these inconsistencies before developing a cut-flow

Jet finder Durham exclusive

module FastJetFinder FastJetFinderDurhamN2 {

set InputArray Calorimeter/towers
set InputArray EFlowMerger/eflow

set OutputArray jets

algorithm: 11 ee-durham kT algorithm
ref: https://indico.cern.ch/event/1173562/cont
to run exclusive njet mode set NJets to int
to run exclusive dcut mode set DCut to float
if DCut > 0 will run in dcut mode

set JetAlgorithm 11
set ExclusiveClustering true
set NJets 2
set DCut 10.0

Backup

Tracking Performance: IDEA vs. CLD

• $m_s = 60 \text{ GeV}, \sin(\theta) = 1e - 7, c\tau = 8769.1 \text{ mm}$ sample saw significant decline in sensitivity

• Supports evidence for poor CLD tracking performance with longer decay lengths

Trackers Hits: $c\tau = 8769 mm (m_s = 60 GeV, sin(\theta) = 10^{-7})$

Tracks per Event: $c\tau = 8769 mm$

Sensitive (> 3 events)

Signal Sensitivities

Not sensitive (< 3 events)

IDEA:

CLD (original):

	20 GeV, 1e-5	20 GeV, 1e-6	$20~{\rm GeV},1\text{e-}7$
Before Selection	1.0	1.0	1.0
Pre-selection	0.957	0.950	0.949
$70 < m_{ll} < 110~{\rm GeV}$	0.888	0.888	0.900
$N_{DVs} \ge 2$	0.091	0.672	0.014
	60 GeV, 1e-5	$60 \mathrm{GeV}, 1e-6$	$60 \mathrm{GeV}, 1e-7$
Before Selection	1.0	1.0	1.0
Pre-selection	0.957	0.957	0.951
$70 < m_{ll} < 110 { m ~GeV}$	0.894	0.895	0.896
$N_{DVs} \ge 2$	0.0002	0.672	0.398

	20 GeV, 1e-5	$20 {\rm GeV}, 1e-6$	20 GeV, 1e-7
Before Selection	1.0	1.0	1.0
Pre-selection	0.955	0.952	0.952
$70 < m_{ll} < 110~{\rm GeV}$	0.891	0.896	0.903
$N_{DVs} \ge 2$	0.092	0.109	0.002
	60 GeV, 1e-5	60 GeV, 1e-6	$60 \mathrm{GeV}, 1e-7$
Before Selection	1.0	1.0	1.0
Pre-selection	0.958	0.958	0.952
$70 < m_{ll} < 110 \ {\rm GeV}$	0.895	0.897	0.899
$N_{DVs} \ge 2$	0.0002	0.654	0.0502

CLD (min. hits = 4):

CLD (min. hits = 5):

	20 GeV, 1e-5	20 GeV, 1e-6	20 GeV, 1e-7		20 GeV, 1e-5	20 GeV, 1e-6	20 GeV, 1e-7
Before Selection	1.0	1.0	1.0	Before Selection	1.0	1.0	1.0
Pre-selection	0.955	0.956	0.949	Pre-selection	0.955	0.955	0.950
$70 < m_{ll} < 110 \text{ GeV}$	0.889	0.894	0.901	$70 < m_{ll} < 110 \text{ GeV}$	0.896	0.894	0.901
$N_{DVs} \ge 2$	0.096	0.441	0.0056	$N_{DVs} \ge 2$	0.094	0.293	0.0042
	60 GeV, 1e-5	60 GeV, 1e-6	60 GeV, 1e-7		60 GeV, 1e-5	60 GeV, 1e-6	60 GeV, 1e-7
Before Selection	1.0	1.0	1.0	Before Selection	1.0	1.0	1.0
Pre-selection	0.957	0.955	0.955	Pre-selection	0.955	0.956	0.953
$70 < m_{ll} < 110 \text{ GeV}$	0.896	0.892	0.900	$70 < m_{ll} < 110 \text{ GeV}$	0.891	0.894	0.900
$N_{DVs} \ge 2$	0.0002	0.687	0.183	$N_{DVs} \ge 2$	0.0003	0.684	0.123

Note: have 2.986 events