Status update of the 1st* year

*plus two month

Anna Tegetmeier

21.06.2024

Timeline and Objectives

Worked on three main topics in the **first year**:

- 1. Qualification project
- 2. Polarisation for VBF di-Higgs
- 3. Effective Field Theories in VBF di-Higgs

Qualification Project: Tracking

- Project for People in the ATLAS collaboration to become an author
- Duration: 1 year
- Topic: Backtracking with the ITk
 - ITk
 - new Silicon based inner detector built to replace the current inner detector in ATLAS for the HL-LHC phase
 - Backtracking algorithm
 - Algorithm to improve reconstruction of converted photons
 - Used to reconstruct tracks originating from electronpositron pairs from photon conversion
 - Such tracks are typically displaced which makes
 - difficult for the standard tracking algorithm to reconstruct them

2.1m

Current inner detector

ITk

files/ATLAS_ITK.png

- Testing the current implementation of the method in the main development branch Status: done
- Characterize the performance of the method to figure out how electron track efficiency is lost and/or track quality is degraded Status: done
- Improve the method in the context of the ITk
 Status: almost finished

Status: done

- Can be accessed for different track container
- Confirmed that tracks from the Backtracking algorithm are available and look reasonable lacksquare
- Conversion vertices are available and look reasonable \bullet

Testing the current implementation of the method in the main development branch

Characterize the performance of the method to figure out how electron track efficiency is lost and/or track quality is degraded Status: done

- Studied reconstruction efficiencies for photon conversions
- \bullet

Found lower efficiency than for the current inner detector (who has efficiency >70%)

Improve the method in the context of the ITk Status: almost finished

- No improvement by modifying the parameters of the algorithm \bullet
- Studied seed efficiency
- Investigating truth conversion electrons that are not matched to tracks \bullet
- Will finish this in July

Main Physics Topic

Physics Subject

- Main physics focus of the thesis: Higgs-boson pair production
- Two main production modes:

gluon-gluon Fusion (ggF)

Leading Production mode

- Cross section: $\sigma_{ggF} = 31.05$ fb
- Sensitive to the trilinear Higgs self-coupling (κ_{λ})

Vector Boson Fusion (VBF)

Subleading Production mode

- Cross section: $\sigma_{VBF} = 1.73$ fb
- Sensitive to the trilinear Higgs self-coupling (κ_{λ}) and the coupling of two vector bosons to two Higgs bosons (κ_{2V})

2. Polarisation in VBF di-Higgs

What is polarization?

• Alignment of a particles spin with its momentum

What are the polarizations of the W and Z boson?

- transversal polarization (T) \rightarrow Spin (anti)parallel to momentum
- longitudinal polarization (L) \rightarrow Spin perpendicular to momentum

What is polarization?

Alignment of a particles spin with its momentum

What are the polarizations of the W and Z boson?

- transversal polarization (T) \rightarrow Spin (anti)parallel to momentum
- $\left(\text{longitudinal polarization (L)} \right) \rightarrow \text{Spin perpendicular to momentum}$

What is polarization?

Alignment of a particles spin with its momentum

What are the polarizations of the W and Z boson?

- transversal polarization (T) \rightarrow Spin (anti)parallel to momentum
- longitudinal polarization (L) \rightarrow Spin perpendicular to momentum

What is polarization?

Alignment of a particles spin with its momentum

Direct consequence of the Higgs mechanism Test of the this mechanism

Question: What is the polarization composition in VBF di-Higgs?

Polarization in VBF di-Higgs

Goal:

• Simulate VBF HH with polarized vector bosons

Polarization in VBF di-Higgs

Goal:

Simulate VBF HH with polarized vector bosons

Problem:

- Vector bosons are intermediate particles
- No generator available to simulate the polarization of that at the moment

Polarization in VBF di-Higgs Goal: Simulate VBF HH with polarized vector bosons **Problem**: Vector bosons are intermediate particles No generator available to simulate the polarization of that at the moment κ_V **Temporary Fix:** Simulate the direct collision of the vector bosons: $V_X V_X \to HH$

 \bullet

X =longitudinal (L), transversal (T)

Polarization in VBF di-Higgs Goal: Simulate How does the cross section depends on: the center of mass energy different values of the coupling modifiers Vector b No gene the different polarizations of that at

Temporary Fix: Simulate the direct collision of the vector bosons: $V_X V_X \to HH$ X =longitudinal (L), transversal (T)

 κ_V

Effect of changing κ_{λ}

Effect of changing κ_{2V}

20

Effect of changing κ_{λ}

Effect of changing κ_{λ}

Effect of changing κ_{λ}

Effect of changing κ_{λ}

Effect of changing κ_{λ}

Effect of changing κ_{λ}

Effect of changing κ_{2V}

 E_{cm} [GeV]

Results: Strongly dominated by the LL polarization

Effect of changing κ_{λ}

 E_{cm} [GeV]

Results: As expected: Unitarity violation only visible for the

Effect of changing κ_{λ}

E_{cm} [GeV]

- Strongest for $\kappa_{\lambda}, \kappa_{2V} \approx 2$

Effect of changing κ_{2V}

 E_{cm} [GeV]

Results: Very low energies: T fraction can get close to LL

3. Effective Field Theories

Effective Field Theory

- BSM physics at energy scales above the range of the LHC can lead to deviations in the tale of distributions
- These can be parametrized by higher order operators in SM EFT models:

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{f_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{f_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)}$$

Deviation in tails

Effective Field Theory

- BSM physics at energy scales above the range of the LHC can lead to \bullet deviations in the tale of distributions
- These can be parametrized by higher order operators in SM EFT models:

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{f_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{f_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)}$$

The EFT studies in Run 2 di-Higgs analysis were done looking at dimension-6 operators

Deviation in tails

Effective Field Theory

- BSM physics at energy scales above the range of the LHC can lead to \bullet deviations in the tale of distributions
- These can be parametrized by higher order operators in SM EFT models: \bullet

Deviation in tails

This is what we will look at in this presentation

The Eboli Model

The Eboli model (https://arxiv.org/pdf/1604.03555.pdf) is a dimension-8 EFT model used by VBS analysis

$$\mathcal{L}_{\mathrm{EFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{f_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)}$$

- Affects only genuine quartic couplings without effects on the triple couplings
- Contains 18 independent operators
 - **S operators:** affecting only quartic vertices with only longitudinally polarised vector boson

 - **T** operators: affecting only quartic vertices with only transversally polarised vector bosons

	WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma\gamma$
$\mathcal{O}_{S,0},\mathcal{O}_{S,1},\mathcal{O}_{S,2}$	✓	~			~				
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\mathcal{O}_{M,7}$	√	~	~	~	~	~	~		
${\cal O}_{M,2},{\cal O}_{M,3},{\cal O}_{M,4},{\cal O}_{M,5}$		~	~	~	~	~	~		
$\mathcal{O}_{T,0},\mathcal{O}_{T,1},\mathcal{O}_{T,2}$	 ✓ 	~	~	~	~	~	~	~	~
$\mathcal{O}_{T,5},\mathcal{O}_{T,6},\mathcal{O}_{T,7}$		~	~	~	~	~	~	~	~
$\mathcal{O}_{T,8}, \mathcal{O}_{T,9}$					~	~	~	~	~

- Study from A. Cappati, R. Covarelli, P. Torrielli & M. Zaro about the Eboli Model in VBF di-Higgs (https://link.springer.com/article/10.1007/JHEP09(2022)038)
 - processes

M operators: affecting the quartic vertices with mixed longitudinally and transversally polarised vector bosons

Allowed by the SM

VBF di-Higgs is also sensitive to the operators and expected to give similar or stronger constraints as VBS

ullet

	WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma\gamma$	ZZHH	WWHH	$Z\gamma HH$	$\gamma\gamma HH$
$\mathcal{O}_{S,0},\mathcal{O}_{S,1},\mathcal{O}_{S,2}$	✓	~			~					 	✓		
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\mathcal{O}_{M,7}$	✓	~	~	~	~	~	~			~	~	~	~
$\mathcal{O}_{M,2},\mathcal{O}_{M,3},\mathcal{O}_{M,4},\mathcal{O}_{M,5}$		~	~	✓	~	~	~			✓		✓	~
$\mathcal{O}_{T,0},\mathcal{O}_{T,1},\mathcal{O}_{T,2}$	✓	~	~	✓	~	~	~	~	~				
$\mathcal{O}_{T,5}, \mathcal{O}_{T,6}, \mathcal{O}_{T,7}$		~	~	✓	\checkmark	~	\checkmark	~	~				
$\mathcal{O}_{T,8}, \mathcal{O}_{T,9}$					~	~	~	~	~				

Performed tests using the Eboli model with the VBF di-Higgs process to looked at the cross sections

 \bullet

	WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma\gamma$	ZZHH	WWHH	$Z\gamma HH$	$\gamma\gamma HH$
$\mathcal{O}_{S,0},\mathcal{O}_{S,1},\mathcal{O}_{S,2}$	\checkmark	\checkmark			\checkmark					\checkmark	\checkmark		
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\mathcal{O}_{M,7}$	\checkmark	\checkmark	\checkmark	\checkmark	~	~	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{M,2},\mathcal{O}_{M,3},\mathcal{O}_{M,4},\mathcal{O}_{M,5}$		~	\checkmark	~	~	~	\checkmark			\checkmark		~	 ✓
$\mathcal{O}_{T,0},\mathcal{O}_{T,1},\mathcal{O}_{T,2}$	✓	~	~	~	~	~	~	~	~				
$\mathcal{O}_{T,5}, \mathcal{O}_{T,6}, \mathcal{O}_{T,7}$		~	~	✓	~	~	~	~	~				
$\mathcal{O}_{T,8}, \mathcal{O}_{T,9}$			and a second		~	~	~	~	~				

S operators only affect SM vertices with longitudinally ulletpolarised vector boson

Performed tests using the Eboli model with the VBF di-Higgs process to looked at the cross sections

 \bullet

	WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma\gamma$	ZZHH	WWHH	$Z\gamma HH$	$\gamma\gamma HH$
$\mathcal{O}_{S,0},\mathcal{O}_{S,1},\mathcal{O}_{S,2}$	\checkmark	✓			~					\checkmark	\checkmark		
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\mathcal{O}_{M,7}$	✓	✓	\checkmark	\checkmark	~	✓	✓			✓	\checkmark	✓	~
$\mathcal{O}_{M,2},\mathcal{O}_{M,3},\mathcal{O}_{M,4},\mathcal{O}_{M,5}$		✓	\checkmark	\checkmark	~	✓	✓			✓		\checkmark	~
$\mathcal{O}_{T,0},\mathcal{O}_{T,1},\mathcal{O}_{T,2}$	√	✓	\checkmark	\checkmark	✓	✓	✓	~	~				
$\mathcal{O}_{T,5}, \mathcal{O}_{T,6}, \mathcal{O}_{T,7}$		~	\checkmark	~	~	~	~	~	~				
$\mathcal{O}_{T,8}, \mathcal{O}_{T,9}$		NA TAN DESCRIPTION OF A D	and a more set of the set of the set of the set of a more set		\checkmark	~	~	~	~				

- S operators only affect SM vertices with longitudinally \bullet polarised vector boson
- M operators additionally lead to new vertices that are \bullet forbidden by the SM

Performed tests using the Eboli model with the VBF di-Higgs process to looked at the cross sections

 \bullet

	WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma\gamma$	ZZHH	WWHH	$Z\gamma HH$	$\gamma\gamma HH$
$\mathcal{O}_{S,0},\mathcal{O}_{S,1},\mathcal{O}_{S,2}$	~	~			~					~	✓		
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\mathcal{O}_{M,7}$	✓	~	~	~	~	~	~			~	✓	~	~
$\mathcal{O}_{M,2},\mathcal{O}_{M,3},\mathcal{O}_{M,4},\mathcal{O}_{M,5}$		~	\checkmark	1	~	~	~			\checkmark		~	~
$\mathcal{O}_{T,0},\mathcal{O}_{T,1},\mathcal{O}_{T,2}$	\checkmark	✓	\checkmark	1	1	~	~	~	~				
$\mathcal{O}_{T,5}, \mathcal{O}_{T,6}, \mathcal{O}_{T,7}$		~	~	✓	~	~	~	~	~				
$\mathcal{O}_{T,8}, \mathcal{O}_{T,9}$			and a period of the state of the state a second of the		✓	~	~	~	~				

- S operators only affect SM vertices with longitudinally \bullet polarised vector boson
- M operators additionally lead to new vertices that are \bullet forbidden by the SM
- Not sensitive to the T operators \bullet

Performed tests using the Eboli model with the VBF di-Higgs process to looked at the cross sections

- Distributions of generated sample look good \bullet
- First rough estimation of limits
 - In optimistic calculation comparable with best limits from VBS analysis
 - constraining different parameters at the same time

• Even if 1D limits are less strong the analysis might still be interesting for combinations when

coefficient	VBS semileptonic	VBF	НН
$[TeV^{-4}]$	from *	estimated limit conservative	estimated limit optimistic
f_{M0}/Λ^4	[-1.13, 1.13]	[-3.69, 3.69]	[-0.61, 0.60]
f_{M1}/Λ^4	[-3.24, 3.24]	[-14.89, 14.81]	[-2.47, 2.40]
f_{M2}/Λ^4	[-1.66, 1.67]	[-5.16, 5.16]	[-0.85, 0.85]
f_{M3}/Λ^4	[-5.29, 5.29]	[-20.48, 20.47]	$[-3.36, \ 3.35]$
f_{M4}/Λ^4	[-2.62, 2.62]	$[\ -15.43,\ 15.44]$	[-2.52, 2.54]
f_{M5}/Λ^4	[-3.81, 3.84]	[-27.65, 27.74]	[-4.50, 4.58]
f_{M7}/Λ^4	[-5.33, 5.21]	[-29.63, 29.78]	[-4.80, 4.95]
f_{S0S2}/Λ^4	[-3.22, 3.23]	[-64.90, 61.36]	[-12.26, 8.73]
f_{S1}/Λ^4	[-6.86, 6.88]	[-45.08, 43.21]	[-8.23, 6.36]

* D. Carlton et al., Study of electroweak WW/WZ/ZZ production in 3 semileptonic final states and limits on anomalous 4 quartic gauge couplings with 13 TeV ATLAS full 5 Run-2 data, ANA-STDM-2018-27-INT1

Non-Scientific Topics

Requirements for the PhD Thesis

Non-Scientific Training (require 40h)

- Completed 32h of training
- To do: Ethics training (6h)

Scientific training (require 40h)

- Introductory Tutorial on Data Analysis with Deep Neural Networks (4h)
- Desy Statistics School (4 days, 18h)
- Presentations (12h)
 - working group (CERN)

 - 13.03.2024: "A look into Polarisation and EFT for VBF di-Higgs", Clermont-Ferrand
- To do: 6h of scientific training
- Plans:
 - 26.09.2024: presentation "EFT interpretations in HH", MBI, Toulouse
 - Attending the European School of High-Energy Physics 2025

English test (TOEIC)

- 11.12.2023: Training test, score: 980 (750 needed)
- 11.06.2024: Official test, score: not yet received

• 15.11.2023: "Vector-boson polarization in VBF di-Higgs production", 20th Workshop of the LHC Higgs

• 25.01.2024: "Vector-boson polarization in VBF di-Higgs production", ATLAS di-Higgs workshop (CERN)

Timeline and Objectives

Backup

EFT

Amplitude decomposition approach \bullet

$$\sigma_{\rm SM+EFT} \sim \left| \mathcal{M}_{\rm SM} + \sum_{i} \frac{f_i}{\Lambda^4} \mathcal{M}_i \right|^2 = \left| \mathcal{M}_{\rm SM} \right|^2 + \sum_{i} 2 \frac{f_i}{\Lambda^4}$$

SM Integral SM - E

- Makes it possible to rescale an individual sample to an arbitrary Wilson coefficient \bullet
- With that we do a rough estimation of the limits of the operators ullet
 - $\mu_{HH}^{limit} \sigma_{SM} = \sigma_{SM} + f_i / \Lambda^4 \sigma_{lin} + (f_i / \Lambda^4)^2 \sigma_{auad}$

 - ulleton κ_{2V} (1.5)

• Conservative approach: $\sigma_{SM} = \sigma_{ggF} + \sigma_{VBF}$ and μ_{HH} is current upper limit on sigmal strength: $\mu_{HH} = 2.4$ Optimistic approach: $\sigma_{SM} = \sigma_{SM}^{VBF}$ and $\mu_{HH}^{limit} \sigma_{SM}$ is cross section that corresponds to the current upper limit

 \bullet VBS WZ

operator					Μ					S		\mathbf{SM}
quadratic term		M0	M1	M2	M3	M4	M5	$\mathbf{M7}$	$\mathbf{S0}$	S1	S2	
VBF HH	σ [pb]	3.1E + 05	2.0E + 04	1.6E + 05	$1.1E{+}04$	1.8E + 04	5.4E + 03	5.0E + 03	254	2.2E + 03	862	0.001348
VBS WZ	$\sigma~[{ m pb}]$	3.8E + 04	1.6E + 04	1.3E + 04	$5.5\mathrm{E}{+03}$	6.2E + 04	3.4E + 04	1.1E + 04	$2.9E{+}03$	1.4E + 03	$2.9E{+}03$	1.335
VBF HH	$\sigma_{EFT} \ / \ \sigma_{SM}$	2.3E + 08	1.5E + 07	1.2E + 08	7.8E + 06	1.3E + 07	4.0E + 06	3.7E + 06	1.9E + 05	1.6E + 06	6.4E + 05	1
VBS WZ	σ_{EFT} / σ_{SM}	2.8E + 04	$1.2E{+}04$	9.7E + 03	4.1E + 03	4.6E + 04	$2.5E{+}04$	8.4E + 03	2.1E + 03	$1.1E{+}03$	$2.1E{+}03$	1

- \bullet VBH di-Higgs than for VBS processes
 - ullet

Comparison of the relative increase of the cross sections with respect to the SM between VBF di-Higgs and

Relative increase of the cross section with respect to the SM is about 3-4 orders of magnitudes higher for

This leads to expected similar sensitivity of VBF di-Higgs despite its lower cross section

Closure Test of the Cross Sections

SM

 $\kappa_{\lambda} = 0$

Center of mass energy [GeV]	Sum	Full	Ratio sum/full	Sum	Full	Ratio sum/full	Sum	Full	Ratio sum/full	Sum	Full	Ratio sum/ full	Sum	Full	Ratio su full
270	6,05	6,091	0,9938	19,29	19,14	1,0078	61,57	61,5	1,0012	23,00	23,25	0,9893	0,98	0,98	0,9973
300	7,78	7,844	0,9924	22,63	22,48	1,0069	61,80	61,82	0,9997	35,01	35,34	0,9908	1,88	1,87	1,0016
350	9,10	9,21	0,9880	22,67	22,53	1,0060	48,85	48,9	0,9991	50,05	50,31	0,9948	5,20	5,16	1,0073
400	9,93	10,06	0,9872	21,62	21,61	1,0006	38,20	38,27	0,9981	64,00	64,2	0,9969	10,42	10.39	1,0029
450	10,54	10,68	0,9868	20,63	20,58	1,0024	30,76	30,84	0,9975	78,10	78,45	0,9956	17,28	17.24	1,0025
500	11,00	11,14	0,9877	19,76	19,71	1,0027	25,59	25,6	0,9997	92,84	92,93	0,9991	25,67	25.64	1,0011
550	11,38	11,54	0,9865	19,04	19	1,0023	21,93	21,95	0,9993	108,21	108,4	0,9983	35,54	35.47	1,0018
600	11,67	11,82	0,9877	18,44	18,4	1,0021	19,34	19,37	0,9986	124,49	124,6	0,9992	46,75	46.68	1,0015
1000	12,811	13,06	0,9810	16,01	15,83	1,0115	12,34	12,87	0,9587	289,64	289,5	1,0005	183,52	182.8	1,0039
5000	13,71	13,78	0,9953	14,03	14,09	0,9955	13,30	13,37	0,9951	5955,56	5950	1,0009	5762,23	5758	1,0007
10000	13,77	13,8	0,9977	13,82	14,03	0,9853	13,70	13,72	0,9986	23622,22	2,354E+04	1,0035	23311,11	2.331e+04	1,0000
50000	10,43	13,85	0,75230	12,68	13,92	0,9108	10,39	13,83	0,7515	587000,00	5,87E+05	1,0000	585222,22	5.852e+05	1,0000
100000	10,41	6,224	1,6729	6,22	10,66	0,5839	10,43	6,22	1,6776	2342222,22	2,342E+06	1,0001	2342222,22	2.342e+06	1,0001

- unpolarized (full) sample
 - polarizations
- Good agreement for most energies
- For some coupling parameters differences can be seen at very high energies \bullet
 - These energies are out of the reach of the LHC at the moment

 $\kappa_{\lambda} = 6$

 $\kappa_{2V} = 0$

 $\kappa_{2V} = 2$

Compare the cross sections of the sum of the individual polarization combinations with the cross section of the

Individual polarizations are divided by a factor (see next slide) to account to Madgraph averaging over initial state

Comparison of the sum of the polarizations and the full sample

- Compare the cross section of the sum of all the polarizations to the cross section of the unpolarized sample (full)
- Need to account for the fact that Madgraph averages over the initial state polarizations
 - Need to apply an averaging factor to the individual polarizations before adding them
- There are three polarizations for the VV->HH process
 - Longitudinal (L), left-handed (I) and right-handed (r)
 - This means that there are 9 polarization combinations in the initial state
 - LL, LI, IL, Lr, rL, II, Ir, rI, rr
 - Need to divide each polarization combination by 9
 - In my samples the left- and right-handed polarization are combined into the transversal (T) polarization
 - the polarizations for LT and TT each
 - That means that the averaging factor needs to be adjusted
 - LL: 1/9
 - LT: 1/2.25 = 1/4 * 1/9
 - Contacted Madgraph authors to confirm these fractions (<u>https://answers.launchpad.net/mg5amcnlo/+question/708414</u>)
 - Test with simulating the left- and right-handed polarizations separately seems to confirm that
 - In this case dividing all the polarizations by 9 leads to a good closure with the cross section of the full sample

• Likely in the transversal sample Madgraph already averages over the left- and right-handed polarizations, meaning 4 combinations of

Look at the normalized truth m_{HH} distributions of the VBF di-Higgs process (here for $HH \rightarrow bb\gamma\gamma$) at center of mass energy for Run 3 **Expect most of the events to be lower than** $m_{HH} \approx 1200 \ GeV$

Effect of changing κ_{λ}

Effect of changing κ_{2V}

Effect of changing κ_{λ}

Longitudinal longitudinal polarization (LL):

- κ_{2V} , κ_{V} : Unitarity violation visible for deviations from the SM
 - Large cancellations $\kappa_{2V} \kappa_V$ are expected
- : No Unitarity violation visible • K_{λ}
 - s-channel diagram with off-shell Higgs disappears for high energies

Effect of changing κ_{2V}

Effect of changing κ_V

Other polarizations (LT and TT):

No unitarity violation

Mixed polarization (LT):

• Very strongly suppressed

12

Effect of the Different Coupling Paramenes (Coomed in Cross Section

• The LL polarization dominates for most of the coupling values over large energy regimes

cross section [pb]

- Closer look at more coupling values of κ_{λ} between the limits
 - Relative fraction of \top at very low energies seems to be largest for $\kappa_{\lambda} \approx 2$
 - For values of κ_{λ} between 2 and 6 the cross sections of LL and TT gets close

But for some values of the coupling parameters the relative fraction of T compared to LL gets larger at low energies

Effect of the Different Coupling Paramenes Scooled in Cross Section

• The LL polarization dominates for most of the coupling values over large energy regimes

cross section [pb]

- Closer look at more coupling values of κ_{2V} between the limits
 - Relative fraction of T at very low energies seems to be largest for $\kappa_{2V} \approx 2$
 - Large difference of the cross sections for $\kappa_{2V} < 1$

But for some values of the coupling parameters the relative fraction of T compared to LL gets larger at low energies

Polarization Distributions

300 GeV

 $V_X V_X \rightarrow H H$ $V_X V_X \rightarrow H H$ -LL √s = 270 GeV <u>√s</u> = 300 GeV -LT 0.14 klambda=2 klambda=2 0.16 -TT -sum – full 0.08 $\kappa_{\lambda} = 2$ 0.06 0.06 0.04 $V_X V_X \rightarrow H H$ $V_X \: V_X \to H \: H$ -LL **√**s = 270 GeV 0.2 √s = 300 GeV 0.14 -LT k2V=2 k2V=2 -TT -sum - full 0.08 0.06 $\kappa_{2V} = 2$ 0.06 0.04 0.04 **₽**....**₽**...

270 GeV

Good agreement of shape of the distribution of the sum of the polarizations and the unpolarized (full) sample lacksquare

Δη(h1, h2)

- $\kappa_{\lambda} = 2$: Some shape differences visible between LL and TT
- $\kappa_{2V} = 2$: Distributions of LL and TT very similar

350 GeV

500 GeV

Distributions for the SM case

- Distribution of LL and sum almost identical due to dominating cross section of LL
- Comparison to Run 3 VBF $HH \rightarrow bb\gamma\gamma$ distribution in slices of m_{HH}
 - The shapes of the distributions follow a similar trend as the shapes of the distributions of the full sample lacksquare

- Distributions of LL and TT very similar
- Comparison to Run 3 VBF $HH \rightarrow bb\gamma\gamma$ distribution in slices of m_{HH} ullet
 - The shapes of the distributions follow a similar trend as the shapes of the distributions of the full sample

- Some shape differences visible between LL and TT \bullet
- Comparison to Run 3 VBF $HH \rightarrow bb\gamma\gamma$ distribution in slices of m_{HH} \bullet
 - Distributions of the Run 3 VBF $HH \rightarrow bb\gamma\gamma$ sample more central \bullet
 - Possible that the vector bosons that are scattered off from the protons are preferably transversal polarized

 $-\kappa_{\lambda}=2, \kappa_{2V}=1, \kappa_{V}=1$

2

4

6

×10⁻³

0.25

0.2

0.15

0.

0.05

VBF HH \rightarrow bb $\gamma\gamma$

-6

 $\sqrt{s} = 13.6 \text{ TeV}, 300 \text{ fb}^{-1}$

475 - 550 GeV

6

-LL

-LT

-TT

- sum

- full

-4

-2

0

Distributions for $\kappa_{\lambda} = 6$

- Distributions of LL and TT very similar
- Comparison to Run 3 VBF $HH \rightarrow bb\gamma\gamma$ distribution in slices of m_{HH} ullet
 - The shapes of the distributions follow a similar trend as the shapes of the distributions of the full sample

-LL

—LT

—TT

— sum

– full

 $-\kappa_{\lambda}=6, \kappa_{2V}=1, \kappa_{V}=1$

2

4

6

0

- Distributions of LL and TT very similar
- Comparison to Run 3 VBF $HH \rightarrow bb\gamma\gamma$ distribution in slices of m_{HH}
 - The shapes of the distributions follow a similar trend as the shapes of the distributions of the full sample ullet

Distributions for $\kappa_{2V} = 0$

-LL

—LT

—TT

-sum

- full

V_X V_X → H H √s = 500 GeV

k2V=0

400 GeV

6

0.0025

0.002

0.0015

0.001

0.0005

-6

-4

-2

0

2

4

6

Δη(h1, h2)

- Distributions of LL and TT very similar
- Comparison to Run 3 VBF $HH \rightarrow bb\gamma\gamma$ distribution in slices of m_{HH}
 - The shapes of the distributions follow a similar trend as the shapes of the distributions of the full sample ullet

Distributions for $\kappa_{2V} = 2$

- Done first tests using the Eboli model with the VBF di-Higgs process to looked at the cross sections \bullet
- Large cross section due to EFT effects in comparison to the SM cross section indicates sensitivity to the operator \bullet
 - Only looked at one operator at the time ullet
 - All Wilson coefficients set to 1 GeV^{-4} in order to compare the increase in the cross sections ullet

operator				М	
quadratic term	M0	M1	M2	M3	M4
$\sigma~[{ m pb}]$	3.1E + 05	2.0E + 04	1.6E + 05	1.1E + 04	1.8E + 0

Sensitive to the M operators

