HELIX (High Energy Light Isotope eXperiment)

and a star to the star

For McDonald Institute National Meeting 2024

Presented by Nahee Park

HELIX Collaboration

University of Chicago

• Hyebin Jeon, Keith McBride, Kenichi Sakai, Scott P. Wakely

Indiana University

• James Musser, Gerard Visser

McGill University

• David Hanna, Ste O'Brien

Northern Kentucky University

• Scott Nutter

Ohio State University

Patrick Allison, James J. Beatty, Lucas Beaufore, Dennis Calderon

Pennsylvania State University

• Yu Chen, Stephane Coutu, Isaac Mognet, Monong Yu

Queen's University

• Melissa Baiocchi, Avani Bhardwaj, Connor McGrath, Nahee Park

University of Michigan

• Noah Green, Gergory Tarle

New discoveries challenge classical paradigm of cosmic rays

A new era of precision space-based measurements has brought real surprises

- Rising positron fraction
- Spectral index changes before the knee energy

 \rightarrow It is critical to understand the propagation!

Primary/Secondary Ratio for Propagation Studies

Amount of material traversed by CRs in our Galaxy can be estimated by primary-to-secondary ratio

• Boron-to-Carbon (B/C) ratio is best measured

Primary/Secondary Ratio for Propagation Studies

Amount of material traversed by CRs in our Galaxy can be estimated by primary-to-secondary ratio

• Boron-to-Carbon (B/C) ratio is best measured

\rightarrow Sensitive to the average amount of matter traversed by CRs during their average lifetime in our Galaxy

¹⁰Be/⁹Be measurements

¹⁰Be : Unstable isotope with known half life of 1.4 × 10⁶ yr • ¹⁰Be/⁹Be ratio provides strong constraints for the propagation models • Challenging measurements

¹⁰Be/⁹Be measurements

¹⁰Be : Unstable isotope with known half life of 1.4 × 10⁶ yr ¹⁰Be/⁹Be ratio provides strong constraints for the propagation models Challenging measurements

¹⁰Be/⁹Be measurements

¹⁰Be : Unstable isotope with known half life of 1.4 × 10⁶ yr ● ¹⁰Be/⁹Be ratio provides strong constraints for the propagation models

- Challenging measurements

HELIX is designed to provide a precision measurement of ¹⁰Be!

Helle High Energy Light Isotope experiment

A new balloon-borne magnet spectrometer payload to measure ¹⁰Be/9Be isotope ratio up to 10 GeV/n

• Design considerations

- -A mass resolution of few % up to 10 GeV/n -Readout within a very strong magnetic field (Superconducting magnet used for HEAT balloon payloads, B field at the center $\sim 1 \text{ T}$)
- -All SiPM readout needs good thermal design
- **Top TOF** Pressurized Vessel ∠Magnet Drift Chamber Tracker **Bore paddle** -RICH **Bottom TOF**

High Energy Light Isotope eXperiment

A new balloon-borne magnet spectrometer payload to measure ¹⁰Be/9Be isotope ratio up to 10 GeV/n

• Design considerations

- -A mass resolution of few % up to 10 GeV/n
- -Readout within a very strong magnetic field (Superconducting magnet used for HEAT balloon payloads, B field at the center ~ 1 T)
- -All SiPM readout needs good thermal design
- Two stage approach to cover wider range of energy
 - -Stage 1 : covers up to ~ 3 GeV/n

High Energy Light Isotope eXperiment

A new magnet spectrometer payload to measure ¹⁰Be/⁹Be isotope ratio up to 10 GeV/n

Here High Energy Light Isotope experiment

HELIX HELIX A new n 10 GeV/

535

-

¹⁰Be/9Be ratio up to ~3 GeV/n with $\Delta m/m$ ~2.5%

- 7-14 day exposure with 0.1 m²sr geometry factor
- Measure the charge of CR up to neon (Z=10)
- Mass resolution of few percentage for light isotopes up to 3 GeV/n

¹⁰Be/9Be ratio up to ~3 GeV/n with $\Delta m/m$ ~2.5%

Time of Flight (TOF)

- 3 layers of scintillating paddle, read by SiPMs
- Separation between top & bottom: 2.3 m
- TDC timing resolution better than 25 ps

¹⁰Be/9Be ratio up to ~3 GeV/n with $\Delta m/m$ ~2.5%

Ring Imaging Cherenkov Counter (RICH)

- Highly transparent, hydrophobic aerogel (n=1.15)
- Focal plane (1 m × 1 m) covered by 6 mm × 6mm SiPM array

¹⁰Be/9Be ratio up to ~3 GeV/n with $\Delta m/m$ ~2.5%

1T Superconducting magnet & Drift Chamber Tracker

- Multi-wire drift chamber with drift gas CO2 + Ar
- Spatial resolution of 65 μ m for Z>3
- 72 sense layers, read out with 80 MHz sampling

¹⁰Be/9Be ratio up to ~3 GeV/n with $\Delta m/m \sim 2.5\%$

- 7-14 day exposure with 0.1 m²sr geometry factor
- Measure the charge of CR up to neon (Z=10)
- Mass resolution of few percentage for light isotopes up to 3 GeV/n

HELIX Stage1 Performance Goals

HELIX Flight 2024

HELIX was successfully launched from Kiruna, Sweden on May 28th, 2024.

https://www.youtube.com/watch?v=PoofJ8al4S4

Total flight time: 6 days 8 hrs 27 min • 125M triggers

HELIX Flight 2024

HELIX Flight 2024

Total flight time: 6 days 8 hrs 27 min • 125M triggers

June 3rd: landed at Ellesmere Island, Nunavut

HELIX Position

[600 Positions | Last: 78.1252N, -80.8220E | alt:1381.28m]

July 3rd: A graduate student-initiated land acknowledgement discussion led by Alex Pedersen

HELIX Flight 2024

POLAR BEARS &

MAY BE IN AREA

MUSK-OX

Raw data example (downlink)

HELIX Future Upgrades

developments

- Magnet upgrade: longer exposure time (7 days \rightarrow 28 days)
- Tracker upgrade: better resolution (65 μ m \rightarrow 5 μ m) \rightarrow moving to 4-6 layers of silicon strip trackers
- RICH upgrade
 - -Upgrade to a full focal plane
 - -Potential upgrade to a dual refractive radiator

Needs extend to the measurements to 10 GeV/n with several new detector

We need to assess how much fraction of the detector can be reused

Recovery site on July 6th

First of all...

- Aerogel calibration
- Payload thermal simulation
- Payload metrology & Geant4 model developing
- Flight data analysis - in-flight detector calibration (using DRAC cluster)
- Flight & recovery support
- On-going R&D for future detector developments

HELIX has launched & successfully finished the flight! The payload is successfully recovered and just delivered to Chicago this Monday

Recent discoveries of new features of CRs require better understanding of CR propagation. Measurement of propagation clock isotope, such as ¹⁰Be can provide essential data.

HELIX is a magnet spectrometer designed to measure the light isotopes from proton up to neon (Z=10). The instrument is optimized to measure ¹⁰Be from 0.2 GeV/n to beyond 3 GeV/n with a mass resolution $\leq 3\%$.

Stay tuned for the results!

