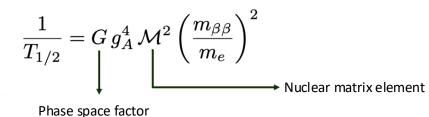
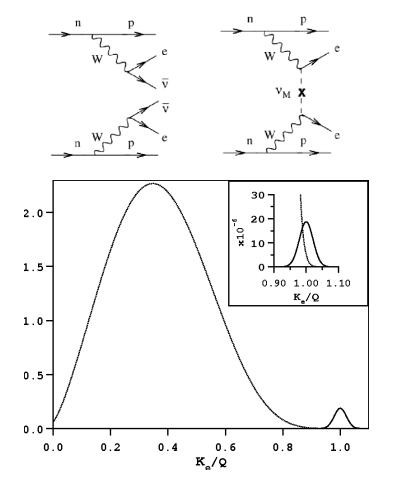
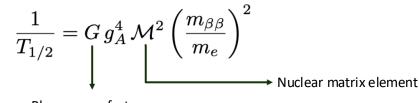
SNO+ Tellurium Purification for **Ονββ**

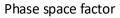


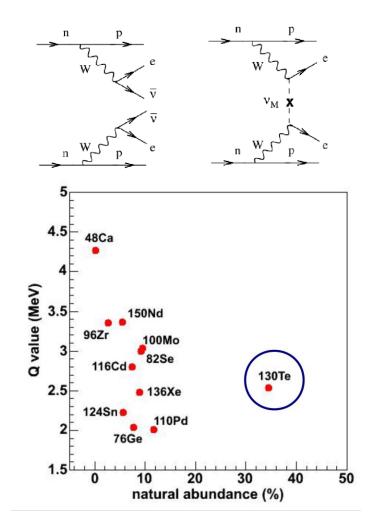


Szymon Manecki, August 8th, 2024

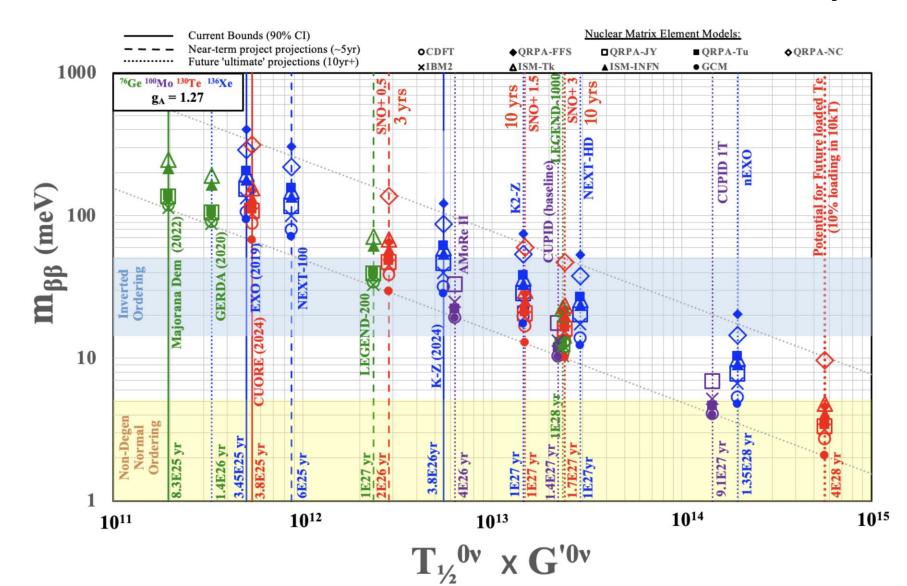
Double Beta Decay


- Are neutrinos their own anti-particles?
- $2\nu\beta\beta$ (Dirac) (A, Z) \rightarrow (A, Z + 2) + $2e^{-}$ + $2\nu_{e}$ ~ 10^{18} - 10^{21} years
- $0\nu\beta\beta$ (Majorana) (A, Z) \rightarrow (A, Z + 2) + 2e⁻ > 10²⁵ years
- We measure:





Double Beta Decay


- Are neutrinos their own anti-particles?
- $2\nu\beta\beta$ (Dirac) (A, Z) \rightarrow (A, Z + 2) + $2e^{-}$ + $2\nu_{e}$ ~ 10^{18} - 10^{21} years
- $0\nu\beta\beta$ (Majorana) (A, Z) \rightarrow (A, Z + 2) + 2e⁻ > 10²⁵ years
- We measure:

Neutrinoless Double Beta Decay

4

Neutrinoless Double Beta Decay

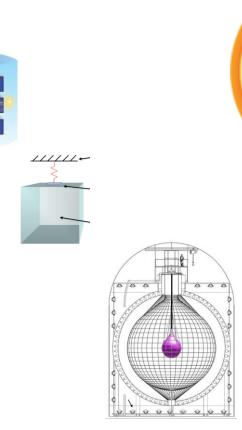
- LEGEND-200
 - 200 kg of ^{enr}Ge HPGe TPC's

• T^{0v}_{1/2} lower limits (90% frequentist C.L.)

Observed

CUORE

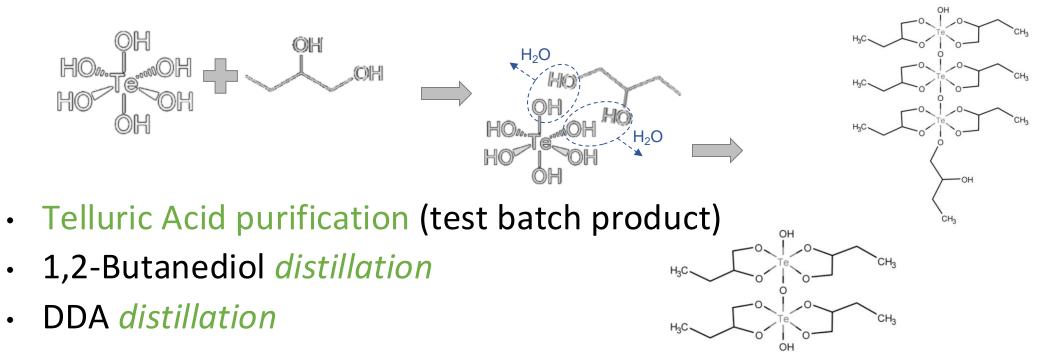
> 1.9 · 10²⁶ yr 2.8 · 10²⁶ yr

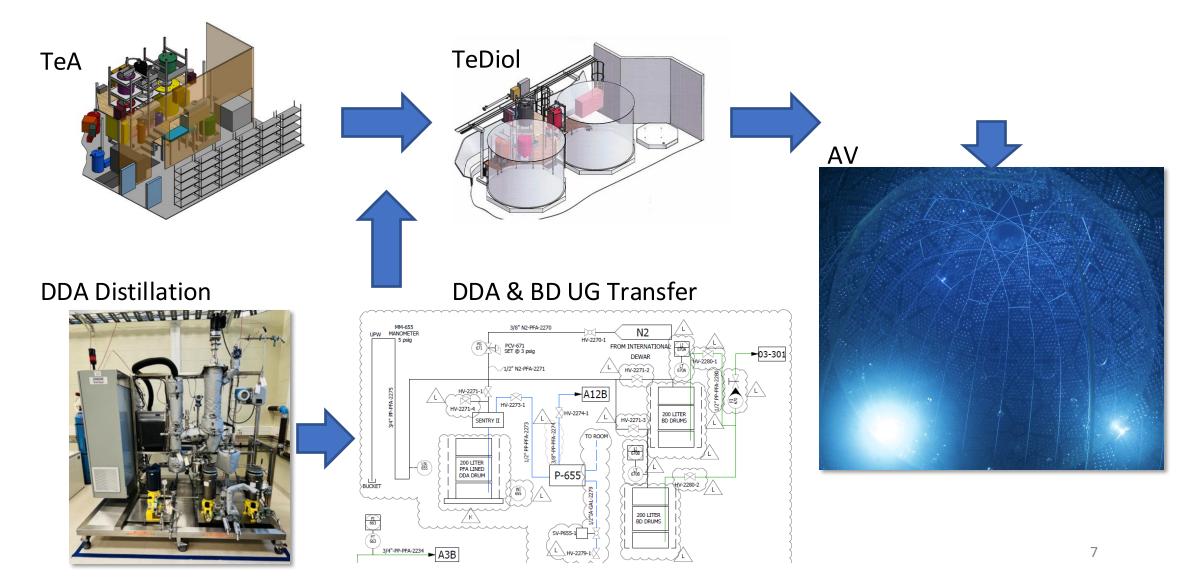

Sensitivity

• 750 kg TeO₂ cryogenic calorimeters

Half-life limit: $T_{1/2}^{0
u}$ > $3.8 imes 10^{25}$ yr (90% C.I.)

- KamLAND-Zen
 - 800 kg ^{enr}Xe scintillator based detector


Combined T^{0v}_{1/2} > 3.8 × 10²⁶ yr


Milan '24 0vββ: https://agenda.infn.it/event/37867/sessions/29923/#20240618

SNO+ Tellurium-Diol Synthesis

 LAB-soluble TeDiol complexes are formed in condensation and further oligomerization reactions of Telluric Acid with 1,2-Butanediol

SNO+ Tellurium Systems

TeA Purification

- The purification technique relies on solubility of TeA in water based on pH
 - $Te(OH)_6 \leftrightarrow Te(OH)_5O^- + H^+$
- Insoluble contamination
 - Dissolve in water, and filter
- Soluble contamination

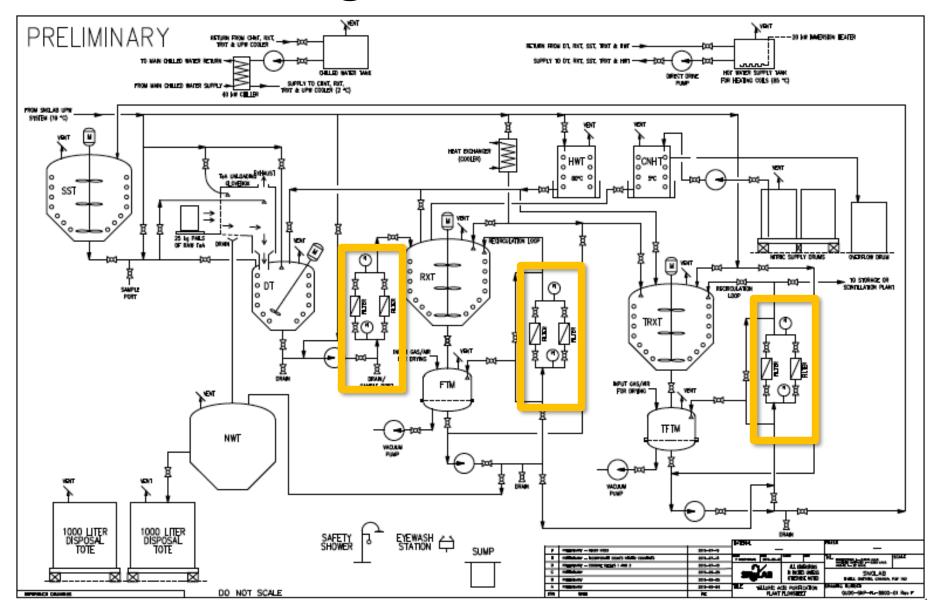
Nucl.

 Force TeA to recrystallize by adding Nitric Acid, let it precipitate out, and drain the "dirty" liquid

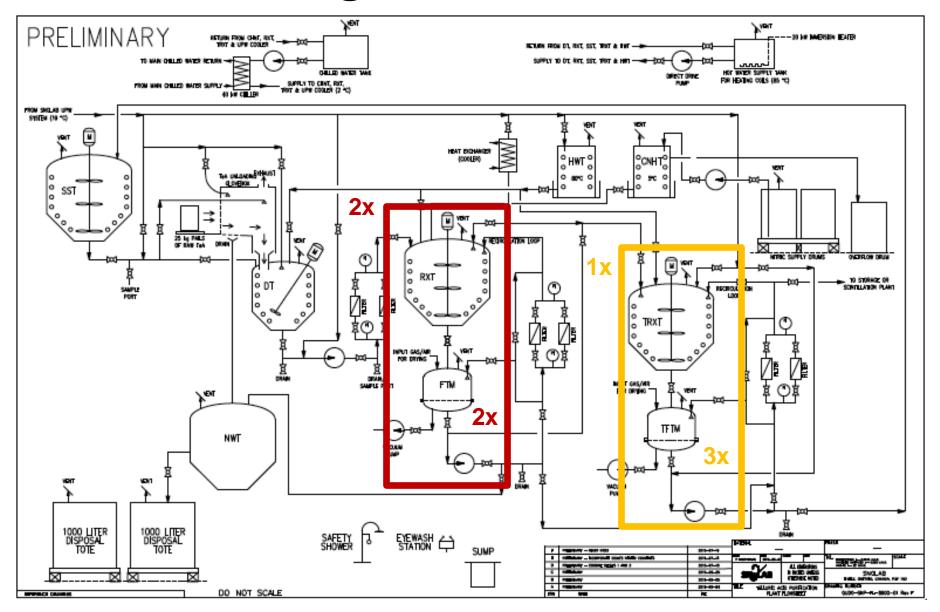
Inst.	Meth.	Α.	795:132-139	(2015))

	Counts in Year 1
isotope	(no purification)
²² Na	7.04×10^{3}
²⁶ Al	9.67×10^{-2}
^{42}K	6.55×10^{2}
⁴⁴ Sc	8.41×10^{1}
⁴⁶ Sc	5.21×10^{-2}
⁵⁶ Co	1.02×10^{-3}
⁵⁸ Co	2.50×10^{-3}
⁶⁰ Co	6.62×10^3
⁶⁸ Ga	6.20×10^2
⁸² Rb	5.15×10^{-16}
⁸⁴ Rb	8.88×10^{-12}
⁸⁸ Y	2.23×10^{1}
^{90}Y	5.05×10^{2}
¹⁰² Rh	1.33×10^{3}
102m Rh	9.54×10^{4}
¹⁰⁶ Rh	8.59×10^{1}
^{110m}Ag	7.96×10^{2}
¹¹⁰ Ag	1.07×10^{1}
¹²⁴ Sb	1.77×10^{-2}
^{126m} Sb	3.06
¹²⁶ Sb	2.92×10^{-35}

Free purification factor due to underground cooldown



AV Target (r.f. 10³): ²³⁸U: 1.3x10⁻¹⁵ g/g ²³²Th: 5x10⁻¹⁶g/g


Expected r.f. for cosmogenics: 10⁵-10⁶

10kg pilot-scale

Flow Diagram For TeA Plant

Flow Diagram For TeA Plant

TeA Purification

TeA Test Batch

- Safety (Process Checklist and Monitoring)
 - Transport and handling of nitric acid and telluric acid
 - Sampling
- Process (Plant and Performance QA)
 - Mechanical, Hydraulic, Electrical, Instrumentation, DeltaV
 - Yields and efficiencies
- Physics (Process Purification QA)
 - Purifications factor and ICP-MS analysis

TeA Test Batch

Safety (Process Checklist and Monitoring)

- Transport and handling of nitric acid and telluric acid
- Sampling
- Process (Plant and Performance QA)
 - Mechanical, Hydraulic, Electrical, Instrumentation, DeltaV
 - Yields and efficiencies
- Physics (Process Purification QA)
 - Purifications factor and ICP-MS analysis

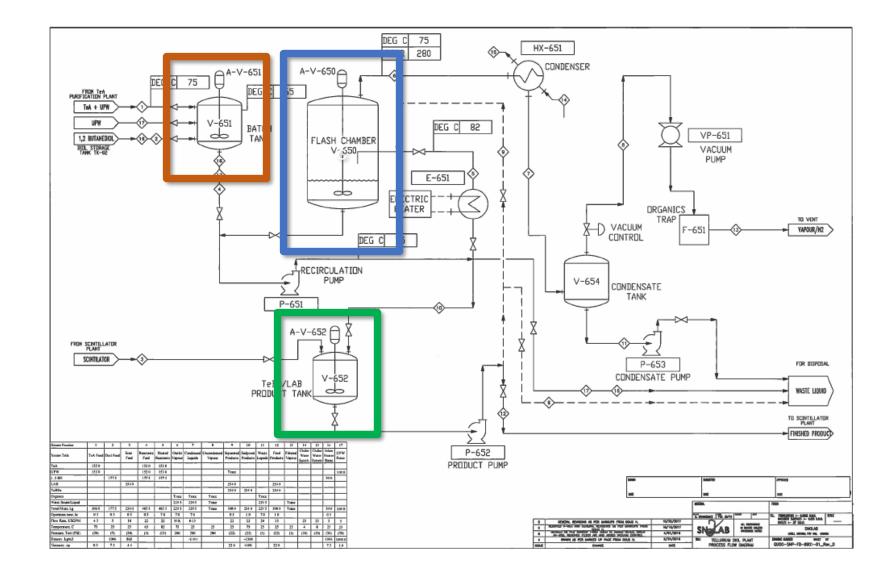
- Nitric acid shipping and logistics
- TeA loading into the plant
- Nitric and telluric acid sampling
- Process systems

- Nitric acid shipping and logistics
- TeA loading into the plant
- Nitric and telluric acid sampling
- Process systems

- Nitric acid shipping and logistics
- TeA loading into the plant
- Nitric and telluric acid sampling


Process systems

- Nitric acid shipping and logistics
- TeA loading into the plant
- Nitric and telluric acid sampling
- Process systems



TeA Purification

- Redissolved TeA sample after first stages of nitric acid recrystallization will be analyzed with ICP-MS soon
- We've determined that our TeA is much cleaner than what we've been assuming so far (U and Th at the level of a few ppt from two different batches/drums)
- Alternative nitric acid supply also demonstrated to be better than expected: ~5x10⁻¹⁵ gU/g and ~6x10⁻¹⁶ gTh/g
- Ultimately the purification factor is determined by the amount of residual nitric acid in the TeA crystal - which we just demonstrated to be satisfactory

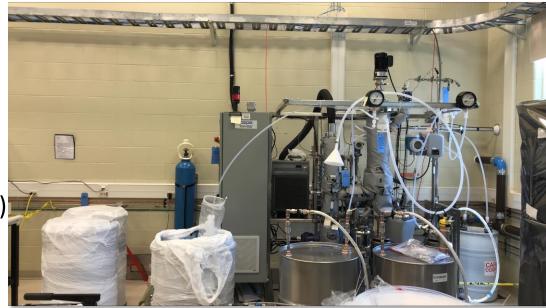
TeDiol Plant Flow Diagram

TeDiol Test Batch

- 8g synthesis R&D
- 160g synthesis system
- Pilot Plant (1.5 kg batch size)
- Full Scale plant (~250kg/batch)

TeDiol Test Batch

- Full Scale plant (~250kg/batch)
 - Already demonstrated water removal
 - Final commissioning tasks TBC
 - Distilled Butanediol needed


Surface Distillation

- DDA Installation
 - Completed as of last week (piping, mechanical and electrical)
 - Minor adjustments remaining (labelling, etc.)
- DDA Still commissioning
 - Planned shortly
 - Further 'full commissioning' will be done this Fall including distillation runs of LAB, BD and DDA

Surface Distillation

- DDA Installation
 - Completed as of last week (piping, mechanical and electrical)
 - Minor adjustments remaining (labelling, etc.)
- DDA Still commissioning
 - Planned shortly
 - Further 'full commissioning' will be done this Fall including distillation runs of LAB, BD and DDA

Summary

- TeA Test Batch was a success
- TeDiol Synthesis test run is the next major milestone
- In parallel we are building reagent transfer stations and commissioning the surface distillation plant

Backup