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Key points

Models where DM forms composite states have been a topic of interest
for a long time.

These models can lead to an A* scaling in the DM-nucleus cross-
section, and multi-scattering in DM experiments.

There are new possible signatures of large numbers of low-energy scatters,
which could be sought in low-threshold detectors e.g. liquid argon




There 1s a wide dark matter model landscape
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The WIMP and thermal freeze-out

relic abundance is achieved through (6. vy~ 3% 10-2 cm’

freeze-out mechanism as universe cools. Q
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The annihilation cross-section has an
upper bound for 2 — 2 self-annihilation

o, <4rim, m,_ < 10° GeV

Griest, Kamionkowski ‘90

(there are many ways to get around this!)



What is compelling about heavy dark matter?

relatively unconstrained at higher cross-sections due to
its lower flux: multiple scatters are possible.
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How is heavy dark matter produced in early universe?

(two models among others)

Composite assembly in early universe Dark matter “squeeze out”

: Witten ‘84
analogous to SM nucleosynthesis g Zhinitzky '02

Baker Kopp Long ‘19
Asadi, Kramer, Kuflick, Ridgway, Slatyer, Smirnov ‘21

L

in absence of bottlenecks, these can
grow very large/heavy

Kjrniak Sigurdson ‘14 |
Gresham Lou Zurek ‘17

Grabowska Melia Rajendra '18 : phislf. 3. Isolated shrinking bubbles of the high-temperature
and many others...

Witten ‘84




Today’s two recipes for composite assembly

"Nuclear” DM "Molecular” DM

Dark, asymmetric fermions, charged under dark SU(N) Dark, asymmetric termions, charged under dark U(1)

form “nucleons” at confinement scale A,

4 Ry~ Ap' /d

Ty

attractive force due to dark photon exchange

attractive force due to dark pion:
nucleons form nuclei

e.g. Kjrniak Sigurdson ‘14 :




A umeline of composite assembly

If charged under dark SU(N)

form “nucleons” at confinement scale A,
dark, asymmetric fermions

asymmetry determines DM abundance

Np=2.5x%x 10" <—> < > (
nd_nd— gca 0.01 GeV

— 9/5
nasym g 10 GeV GeV 12/5
my Ap

C = Sbefore/ Safter

form large composite states




A 1s convenient for parametrizing composite characteristics

Regimes for DM-nucleus scattering
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Pointlike Regime
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Dark Form Factor
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Inelastic Scattering
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Compare with DEAP Muluscatter Search

2108.09405, DEAP

Ohya

—30

can’t resolve individual light pulses

too few scatters
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What if composites interact with electrons?

| 0 —
DM-electron recoil could induce a recoil of the whole atom.
Ar
107 - — N
probability of electron remaining in same orbital
10!
dUAd B dUed I P 3:: 100; enhancement at low momentum transfer
E : ‘fn AV ‘ | ¢( )l =

dER

/ 1071 3

DM-electron mediator form factor

10 102 107 10 10t 102
q (keV')

14




Searching for Atomic Scattering in Liquid Argon

m, =10 Ap, A, =1 MeV
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Conclusions

Models where DM forms composite states have been a topic of interest
for a long time.

An A* scaling and multi-scattering can be achieved by simple models of
"nuclear” and “molecular” composite DM.

3 A large number of low-energy recoils could be a new signature of composite
DM in low-threshold experiments.
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Esumating N,

When binding rate falls below the Hubble rate:

: ATnqvg 6/5
I'/H = (opyvpy)npy/H ~ 1 ’ ND:(A%H)

With Friedmann eq. and estimate number density of DM at composite assembly

3SH>M? = g:,nT*/30, ng = g*n2T3 T, /30(mm,
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Composite Binding Energy

Liquid drop model, like the SM:

BE(Np) _

X ay — asND1/3 — CLCNZQD/S
Np

Rewrite coefticients in terms of A,

BE(ND) ’ A% / A}l) N—1/3 -
2

Rewrite coefticients in terms of A,

BE(N)p)
Np

za’VAD Cl{/SOl
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DM-Atom Scattering
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