New Searches for Composite DM Canadian Astroparticle Annual Meeting

Yilda Boukhtouchen, PhD Candidate August 8th, 2024

Based on work: Acevedo, Boukhtouchen, Bramante, Cappiello, Mohlabeng, Tyagi 2408.xxxx

Models where DM forms composite states have been a topic of interest for a long time.

These models can lead to an A^4 scaling in the DM-nucleus crosssection, and multi-scattering in DM experiments.

There are new possible signatures of large numbers of low-energy scatters, which could be sought in low-threshold detectors e.g. liquid argon

Keypoints

composite "objects"

The WIMP and thermal freeze-out

relic abundance is achieved through freeze-out mechanism as universe cools.

$$\langle \sigma_{ann} v \rangle \sim 3 \times 10^{-26} \frac{\text{cm}^3}{\text{s}} \rightarrow \sigma_{ann} \sim 10^{-36} \text{ cm}^2$$

The annihilation cross-section has an upper bound for $2 \rightarrow 2$ self-annihilation

$$\sigma_{ann} \le 4\pi/m_x \qquad m_x \le 10^5 \text{ GeV}$$

Griest, Kamionkowski '90

GeV

What is compelling about heavy dark matter?

relatively unconstrained at higher cross-sections due to its lower flux: multiple scatters are possible.

$$\left(\frac{\mu_{Ad}}{\mu_{nd}}\right)^2 A^2 \left| F_A(q) \right|^2 \approx \frac{d\sigma_{nd}}{dE_R} A^4 \left| F_A(q) \right|^2, \quad m_d \gg m_d$$

 n_A

How is heavy dark matter produced in early universe? (two models among others)

Composite assembly in early universe

analogous to SM nucleosynthesis

in absence of bottlenecks, these can grow very large/heavy

Kjrniak Sigurdson '14 Gresham Lou Zurek '17 Grabowska Melia Rajendra '18 and many others...

Dark matter "squeeze out"

Witten '84 Zhinitzky '02 Baker Kopp Long '19 Asadi, Kramer, Kuflick, Ridgway, Slatyer, Smirnov '21

FIG. 3. Isolated shrinking bubbles of the high-temperature phase. Witten '84

Today's two recipes for composite assembly

"Nuclear" DM

Dark, asymmetric fermions, charged under dark SU(N)

form "nucleons" at confinement scale Λ_D

attractive force due to dark pion: nucleons form nuclei

e.g. Kjrniak Sigurdson '14

"Molecular" DM

Dark, asymmetric fermions, charged under dark U(1)

attractive force due to dark photon exchange

Λ_D is convenient for parametrizing composite characteristics

Binding energy

 $BE(N_D)/N_D \sim \alpha \Lambda_D$

Size

Regimes for DM-nucleus scattering

Pointlike Regime

Dark Form Factor

$$N_D = 10^4, \Lambda_D = 10 \text{ MeV}$$

-4

 $\cdot 2$

-0

 \bigcirc

8

-4

-2

 $log_{10}(N_{scatters})$

Compare with DEAP Multiscatter Search

2108.09405, DEAP

What if composites interact with electrons?

probability of electron remaining in same orbital $\frac{d\sigma_{Ad}}{dE_R} = \sum_{n,l} \frac{d\sigma_{ed}}{dE_R} |f_{n,l}(q)|^2 |F_{\phi}(q)|^2$

DM-electron mediator form factor

DM-electron recoil could induce a recoil of the whole atom.

Searching for Atomic Scattering in Liquid Argon

 $\overline{m}_d = 10 \Lambda_D, \Lambda_D = 1 \text{ MeV}$

Conclusions

for a long time.

"nuclear" and "molecular" composite DM.

DM in low-threshold experiments.

Models where DM forms composite states have been a topic of interest

An A^4 scaling and multi-scattering can be achieved by simple models of

A large number of low-energy recoils could be a new signature of composite

Reference slides

Estimating N_D

When binding rate falls below the Hubble rate:

$\Gamma/H = \langle \sigma_{D_N} v_{D_N} \rangle n_{D_N}/H$

With Friedmann eq. and estimate number density of DM at composite assembly

$$3H^2 M_{pl}^2 = g_{ca}^* \pi T^4 / 30,$$

$$\sim 1$$
 \longrightarrow $N_D = \left(\frac{4\pi n_d v_d}{\Lambda_D^2 H}\right)^{6/5}$

$$n_d = g_r^* \pi^2 T_{ca}^3 T_r / 30 \zeta \overline{m}_d$$

Composite Binding Energy

Liquid drop model, like the SM:

 $rac{{
m BE}(N_D)}{N_D} \propto a_V$

$$\frac{\text{BE}(N_D)}{N_D} = a'_V \frac{\Lambda_D^3}{(m_{\pi_d})^2} - a'_S \frac{\Lambda_D^4}{(m_{\pi_d})^3} N_D^{-1/3} - a'_c \Lambda_D N_D^{2/3}$$

 $\operatorname{BE}(N_D)$ N_D

$$_{V} - a_{S}N_{D}^{-1/3} - a_{C}N_{D}^{2/3}$$

Rewrite coefficients in terms of Λ_D

Rewrite coefficients in terms of Λ_D

$$\frac{1}{2} \approx a'_V \Lambda_D \qquad a'_V \lesssim 0.1$$

DM-Atom Scattering

 $\frac{d\sigma_{Ad}}{dE_R} = \sum_{n,l}$

reference cross-section:

$$\sigma_{ed} = \frac{\mu_{ed}^2}{16\pi m_d^2 m_e^2} \overline{|\mathcal{M}_{ed}(q)|^2}|_{q^2 = \alpha^2 m_e^2}$$

$$\overline{|\mathcal{M}_{ed}(q)|^2} = \overline{|\mathcal{M}_{ed}(q)|^2}|_{q^2 = \alpha^2 m_e^2} \times |F_{\phi}(q)|^2$$

$$F_{\phi}(q) = rac{lpha^2 m_e^2 + m_{\phi}^2}{q^2 + m_{\phi}^2}$$

Bunge Barrientos Vivier-Bunge '93

$$\sum_{l} \frac{d\sigma_{ed}}{dE_R} |f_{n,l}(q)|^2 |F_{\phi}(q)|^2$$

Atomic form factor

Kopp Niro Schwetz Zupan '09

$$f_{n,l}(q) = \sum_{m} \langle nlm | e^{i(\mathbf{k} - \mathbf{k}')\mathbf{x}} | nlm \rangle$$
$$= (2l+1) \int dr r^2 |R_{nl}|^2 \frac{\sin qr}{qr}$$

 $R_{n,l} = \sum_{i} S_{jl} C_{jln}$ Bunge Barrientos Vivier-Bunge '93

sum of Slater-type orbitals

