DM Direct Detection with SuperCDMS

Prof Miriam Diamond University of Toronto mdiamond@physics.utoronto.ca

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

McDonald Institute National Meeting Aug 9 2024, Kingston ON

https://indico.cern.ch/event/1412503/contributions/6064462/

Physics UNIVERSITY OF TORONTO

David A. Dunlap Department of Astronomy & Astrophysics UNIVERSITY OF TORONTO

SuperCDMS@SNOLAB at a Glance

- Primary science goal: world-leading sensitivity to low-mass WIMPs
- Secondary science goals: electron recoil & dark absorption searches for dark photons, axions, lightly-ionizing particles, etc.
- Cryogenic semiconductor crystals with quantum sensors
- Two detection schemes:
 - Ionization + phonon ('iZIP' detectors) for nuclear vs electron recoil discrimination
 - (Amplified) phonon only ('HV' detectors) for low thresholds

SuperCDMS@SNOLAB at a Glance

- Class- 2000 cleanroom lab, 2 km rock overburden
- Dilution refrigerator with closed-loop cryogenics system
- Initial payload: 24
 semiconductor crystal detectors
 - 'iZIP' towers: 10 Ge + 2 Si crystals
 - ► 'HV' towers: 8 Ge + 4 Si crystals
- Collaboration with CUTE (Cryogenic Underground TEst) facility for tower testing

SuperCDMS infrastructure currently under construction!

- Science reach
- Detector principles
- Highlights of "HVeV" prototype program
 - Nuclear recoil ionization yield measurements
 - Electron recoil DM & dark absorption limits
- Detector response modelling
- Backgrounds
- SuperCDMS@SNOLAB installation status
- Detector testing in CUTE facility

SuperCDMS Science Reach

NRDM SuperCDMS SNOLAB

- Understanding detector response down to the semiconductor bandgap energy crucial for maximizing sensitivity to sub-GeV DM masses
- Recent SNOWMASS projections, for different statistical methods and DM models
 - ► Optimum Interval (OI): signal-only assumption
 - Profile-likelihood ratio (PLR): signal + <u>background</u>

SuperCDMS Science Reach

arXiv:2203.08463

SuperCDMS Detector Principles

- Cryogenic calorimeters at $\sim 10 15 \text{ mK}$
- Energy deposit creates e-/h+ pairs and prompt phonons in crystal
- Charges drift in external electric field
- Drifting charges emit Luke phonons: signal amplification

Driving questions:

- Condensed matter physics (phonons, charge transport, etc) in detectors
- Detector response modeling
- Nuclear ionization yield
- Dominating backgrounds
- Low-energy calibration

SuperCDMS Detector Principles

HV detectors - low threshold

- High resolution total phonon measurement
- No yield discrimination, limited fiducialization
- Typical thresholds below 0.1 keV (4 eV_{ee}) !

HVeV detectors – low threshold gramscale prototypes

- Single electron-hole pair sensitivity
- Runs at test facilities provide insight into backgrounds and calibrations for HV
- Already set some world-leading low-mass DM constraints

Slide credit: Stefan Zatschler

iZIP detectors – low background

- High resolution phonon and charge readout
- Discrimination of surface and ER backgrounds from NR signal region

SuperCDMS detector principles

<u>HV detector</u> → low threshold

Drifting charge carriers (e⁻/h⁺) across a potential (V_b) generates a large number of Luke phonons (NTL effect)

Sensors measure *E*t

Sensors measure E_t and N_{eh}

<u>iZIP detector</u> \rightarrow low background

 Interleaved Z-sensitive Ionization and Phonon detector

Slide credit: Stefan Zatschler

V_b ~ 3 V

SuperCDMS detector principles

- Athermal phonon collection with QETs (Quasiparticle trap-assisted <u>Electrothermal</u> feedback <u>TESs</u>)
- Pulse reconstruction
- Measure of energy deposit

iZIPs

[uuu] Z

R. Ren et al., Phys. Rev. D 104, 032010, 2021

Highlights of HVeV Detector Program

HVeV Run 2 Detection and study of $1 e^{-}/h^{+}$ "burst events"

Hypothesized source: **PCB holder**

HVeV Run 3

- Coincidence measurement
- Confirmed external

HVeV Run 4

- Coincidence measurement, with no PCB
- origin of burst events **Elimination** of multi e^{-}/h^{+} peaks

Latest performance

- V3 of HVeV
- Greatly improved baseline resolution $(\sigma_b = 1.097 \pm 0.003 \,\mathrm{eV})$

Slide credit: Stefan Zatschler

HVeVs for Measuring Nuclear Recoil Ionization Yield

- Ionization yield (Y) measurement down to 100 eV with Si HVeV in a neutron beam
 - ► Significant deviations from "Lindhard model"
 - ► No indication for ionization threshold in Si
- Ge yield measurement in preparation

Total phonon energy and yield $E_t = E_r + (N_{eh} \cdot e \cdot V_b)$ $= E_r \cdot (1 + e \cdot V_b / \varepsilon_{pair} \cdot Y(E_r))$

Slide credit: Stefan Zatschler

HVeV Electron Recoil DM Limits

PRD 102, 091101(R), 2020

HVeV Dark Photon & Axion Limits

PRD 102, 091101(R), 2020

Detector Response Modeling

- Sophisticated GEANT4-based framework, "G4DMC", models crystal and sensor response with help of G4CMP (GEANT4 Condensed Matter Physics) package
 - Crystal dynamics: lattice definition, charge transport, phonon scattering, etc.
 - Impurity effects: Charge Trapping, Impact Ionization
 - ► TES configuration: physical layout, circuitry, electro-thermodynamics

Slide credit: Stefan Zatschler

Detector Response Modeling

<u>NIM A 1055, 168473, 2023</u> (code: <u>github.com/kelseymh/G4CMP</u>)

PRD 104, 032010 (2021)

- Example: simulation of single e^{-}/h^{+} pair in Si HVeV (10×10×4 mm³) Goal: Same reconstruction path for real and simulated raw data!
- Would be suitable for testing advanced reconstruction algorithms, Machine Learning techniques, etc.
 Slide credit: Stefan Zatschler

Backgrounds

Bury our detectors in dark secret (shielded) underground (clean-room) lairs

... Why?...

Backgrounds, backgrounds, backgrounds!

Cosmogenic

- Cosmic ray muons
- Spallation neutrons
- Activated materials

Environmental

- Airborne radon & daughters
- Radio-impurities in materials

Backgrounds

Multiple shielding layers to reduce backgrounds

Backgrounds

SuperCDMS@SNOLAB HVs background spectra projections, before (left) and after (right) analysis cuts, in Si (top) and Ge (bottom)

Black: total bg

Red: ERs from Compton γ's, H, SiGrey: Ge activation lines, convolvedwith 10 eV r.m.s. resolutionGreen: surface β'sOrange: surface Pb recoilsBlue: neutronsCyan: CEvNS

SuperCDMS@SNOLAB Installation Progress in Past Year Slide credit: Yan Liu

22

All 4 towers delievered underground at SNOLAB

Standalone test of the dilution fridge demonstrated base temperature

Cryostat pre-assembly accomplished at SLAC

Shield base installation completed

Cryogenic Underground Test (CUTE) Facility

Radon filter plant

(Quark & Qubit the CUTE HQPiggies)

Cryogenic Underground Test (CUTE) Facility

- Operates down to T = 12 mK
- Low radioactive backgrounds
- Low EM interference
- Minimal mechanical vibrations thanks to cryostat suspension system
- Calibration sources (γ, neutron)
- Class 300, low Rn (< 15 mBq/m³) cleanroom for payload changes

Cryogenic Underground Test (CUTE) Facility

Slide credit: Andrew Kubik

Tower Testing at CUTE

- 1 HV tower payload: 4 Ge, 2 Si detectors
- 5-month international effort
- First tests in very low-bg environment

Analyses underway:

- ✓ Detector calibration
- ✓ Noise modelling
- ✓ Background rates
- ✓ Phonon signal amplification with NTL effect
- ✓ Sensitivity estimation
- ✓ Potential DM search

Slide credit: Aditi Pradeep

Tower Testing at CUTE

151 days covering 4 thermal cycles

Total data volume: 400 detector days

~2 month of calibration data

~2 weeks of low background data

Example pulses from a Silicon detector operated at 100V

Slide credit: Yan Liu

Tower Testing at CUTE

Ge

Event Rate (arbituary unit) ₂01 ₂01 ₂01 ₂01

10-6

10-7

10-7

Demonstrated calibration capability for Ge and Si detectors \checkmark

No fiducial cut applied

1.3 keV peak

10-5

Pulse Amplitude (Amps)

10 keV peak

Ge activation peaks in Tower 3 Detector 3 +/-25V (preliminary data quality cuts)

800 820 800 800 Si Not a fit Cu X-ravs 750 700 650 K-step 600 550 500 450 400 6 Pulse Amplitude (Amps)

Ba source data, Si detector at 0V: ~90 hours Characteristic steps, due to binding energy of shell electrons, can be used for calibration!

160 eV peak

10-6

Ba calibration for Tower 3 Detector 2 at 0V (preliminary data quality cuts)

Slide credit: Aditi Pradeep

Summary

- SuperCDMS SNOLAB is a world-leading DM direct detection experiment currently under construction, targeting sub-GeV DM
- Rapidly ramping up to commissioning phase
- Recent HV tower testing at CUTE marked the first operation of these detectors in underground low-background environment
- Several analyses of tower testing data in-progress to better understand the detectors
- Expecting early science results by next year!

У@SuperCDMS

https://www.snolab.ca/experiment/supercdms/