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• Primary science goal: world-leading sensitivity to low-mass WIMPs
• Secondary science goals: electron recoil & dark absorption searches for dark 

photons, axions, lightly-ionizing particles, etc.
• Cryogenic semiconductor crystals with quantum sensors
• Two detection schemes:

• Ionization + phonon ('iZIP' detectors) for nuclear vs electron recoil discrimination
• (Amplified) phonon only ('HV' detectors) for low thresholds

SuperCDMS@SNOLAB at a Glance
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SuperCDMS@SNOLAB at a Glance
■ Class- 2000 cleanroom lab, 2 km

rock overburden
■ Dilution refrigerator with

closed-loop cryogenics system
■ Initial payload: 24

semiconductor crystal 
detectors
► 'iZIP' towers: 10 Ge + 2 Si

crystals
► 'HV' towers: 8 Ge + 4 Si crystals

■ Collaboration with CUTE 
(Cryogenic Underground TEst)
facility for tower testing

SuperCDMS infrastructure
currently under construction! Slide credit: Stefan Zatschler
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Topics

• Science reach
• Detector principles
• Highlights of “HVeV” prototype program

• Nuclear recoil ionization yield measurements
• Electron recoil DM & dark absorption limits 

• Detector response modelling
• Backgrounds
• SuperCDMS@SNOLAB installation status
• Detector testing in CUTE facility



■ Understanding detector response down to the semiconductor bandgap energy
crucial for maximizing sensitivity to sub-GeV DM masses

■ Recent SNOWMASS projections, for different statistical methods and DM models
►Optimum Interval (OI): signal-only assumption
►Profile-likelihood ratio (PLR): signal + background

NRDM SuperCDMS SNOLAB

OI (dashed)
PLR (solid)

arXiv:2203.08463

SuperCDMS Science Reach
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SuperCDMS Science Reach

Dark Photon Axion-Like Particle DM

Already
excluded 

Already
excluded 

arXiv:2203.08463
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SuperCDMS Detector Principles

Driving questions:
• Condensed matter physics (phonons,

charge transport, etc) in detectors
• Detector response modeling
• Nuclear ionization yield
• Dominating backgrounds
• Low-energy calibration

• Cryogenic calorimeters at ∼ 10 – 15 mK
• Energy deposit creates e−/h+ pairs and 

prompt phonons in crystal
• Charges drift in external electric field
• Drifting charges emit Luke phonons: signal 

amplification

Transition Edge Sensor (TES) 
phonon readout
High Electron Mobility Transistor 
(HEMT) ionization readout
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HV detectors – low threshold
■ High resolution total phonon measurement
■ No yield discrimination, limited 

fiducialization

■ Typical thresholds below 0.1 keV (4 eVee) !

iZIP detectors – low background
■ High resolution phonon and charge readout
■ Discrimination of surface and ER back-

grounds from NR signal region

PRD 91, 052021, 2015

Slide credit: Stefan Zatschler

HVeV detectors – low threshold gram-
scale prototypes
■ Single electron-hole pair sensitivity
■ Runs at test facilities provide insight into 

backgrounds and calibrations for HV
■ Already set some world-leading low-mass 

DM constraints

SuperCDMS Detector Principles
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SuperCDMS detector principles

Sensors measure Et

Sensors measure Et and Neh

total
phonon 
energy

primary 
recoil energy

Luke phonon 
energy

HV detector → low threshold
■ Drifting charge carriers (e−/h+) across a

potential (Vb ) generates a large number
of Luke phonons (NTL effect)

Et = Er + (Neh · e · Vb)

iZIP detector → low background
■ Interleaved Z-sensitive Ionization

and Phonon detector

PRD 95, 082002, 2017Slide credit: Stefan Zatschler
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SuperCDMS detector principles
• Athermal phonon collection with QETs 

(Quasiparticle trap-assisted Electrothermal
feedback TESs)

• Pulse reconstruction
• Measure of energy deposit
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iZIPs

iZIP face

Electric potential, iZIP, y = 0 mm
COMSOL simulation
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HVeVs

Few eV phonon resolution, can see 
single e-h pairs!

Laser calibration

D. W. Amaral et al., Phys. Rev. D 102, 091101(R), 2020
F. Ponce, et al., Phys. Rev. D 101, 031101(R), 2020
R. Ren et al., Phys. Rev. D 104, 032010, 2021
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Highlights of HVeV Detector Program

HVeV Run 2
■ Detection and study

of 1 e−/h+ “burst
events"

■ Hypothesized source: 
PCB holder

HVeV Run 3
■ Coincidence

measurement
■ Confirmed external 

origin of burst events

HVeV Run 4
■ Coincidence 

measurement, with 
no PCB

■ Elimination of multi
e−/h+ peaks

Latest performance
■ V3 of HVeV
■ Greatly improved

baseline resolution
(𝜎𝜎b = 1.097 ± 0.003 eV)

PRD 102, 091101(R), 2020

Slide credit: Stefan Zatschler
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■ Ionization yield (Y ) measurement down to 100 eV 
with Si HVeV in a neutron beam
►Significant deviations from “Lindhard model”
►No indication for ionization threshold in Si

■ Ge yield measurement in preparation

Total phonon energy and yield

Et = Er + (Neh · e · Vb)
= Er · (1 + e · Vb/𝜀𝜀pair · Y (Er ))

arXiv:2303.02196

HVeVs for Measuring Nuclear Recoil Ionization Yield

Slide credit: Stefan Zatschler
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HVeV Electron Recoil DM Limits
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https://doi.org/10.1103/PhysRevD.102.091101


HVeV Dark Photon & Axion Limits

SuperCDMS 
HVeV Run2

Dark Photons Axions
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Detector Response Modeling

■ Sophisticated GEANT4-based framework,  “G4DMC ”,  models crystal and sensor
response with help of G4CMP (GEANT4 Condensed Matter Physics) package
► Crystal dynamics: lattice definition, charge transport, phonon scattering, etc.
► Impurity effects: Charge Trapping, Impact Ionization
► TES configuration: physical layout, circuitry, electro-thermodynamics

Slide credit: Stefan Zatschler
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Detector Response Modeling

Example: simulation of single e−/h+ pair in Si HVeV (10×10×4 mm3)
Goal: Same reconstruction path for real and simulated raw data!
►Would be suitable for testing advanced reconstruction algorithms, Machine

Learning techniques, etc.

PRD 104, 032010 (2021)NIM A 1055, 168473, 2023 (code: github.com/kelseymh/G4CMP)

Slide credit: Stefan Zatschler
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Backgrounds

Bury our detectors in dark secret (shielded) underground (clean-room) lairs

… Why?... Backgrounds, backgrounds, backgrounds!

Cosmogenic
• Cosmic ray muons
• Spallation neutrons
• Activated materials

Environmental
• Airborne radon & daughters
• Radio-impurities in materials
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Backgrounds
Multiple shielding layers to reduce backgrounds
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Backgrounds
SuperCDMS@SNOLAB HVs 
background spectra projections, 
before (left) and after (right) 
analysis cuts,
in Si (top) and Ge (bottom)

Black: total bg
Red: ERs from Compton γ’s, H, Si
Grey: Ge activation lines, convolved 
with 10 eV r.m.s. resolution
Green: surface β’s 
Orange: surface Pb recoils
Blue: neutrons
Cyan: CEvNS
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SuperCDMS@SNOLAB Installation Progress in Past Year Slide credit: Yan Liu
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All 4 towers



Cryogenic Underground Test (CUTE) Facility

(Quark & Qubit 
the CUTE 

HQPiggies)
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• Operates down to T = 12 mK
• Low radioactive backgrounds
• Low EM interference
• Minimal mechanical 

vibrations thanks to cryostat 
suspension system

• Calibration sources (γ, neutron)
• Class 300, low Rn (< 15 mBq/m3) 

cleanroom for payload changes 

Slide credit: Andrew Kubik

Cryogenic Underground Test (CUTE) Facility
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133Ba γ source deployable 
inside shielding, using 
stepper motor

55Fe source deployable 
internally for low-
energy calibrations

Coming soon: 252Cf 
source for neutron 
calibrations

Slide credit: Andrew Kubik

Cryogenic Underground Test (CUTE) Facility
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Tower Testing at CUTE

• 1 HV tower payload: 4 Ge, 2 Si detectors
• 5-month international effort
• First tests in very low-bg environment

Analyses underway:
Detector calibration
Noise modelling
Background rates
 Phonon signal amplification

with NTL effect
 Sensitivity estimation
 Potential DM search

Slide credit: Aditi Pradeep
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Tower Testing at CUTE

Slide credit: Yan Liu

27



A sneak peak at tower testing data…
 Demonstrated calibration capability for Ge and Si detectors

SiGe

Tower Testing at CUTE
Slide credit: Aditi Pradeep
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Ge detector calibration dataset: ~90 hours
Irradiating Ge with n produces 71Ge (τ=11.4 days)
Lines from 71Ge e- capture: 10 keV, 1.3 keV, 160 eV

Ba source data, Si detector at 0V: ~90 hours
Characteristic steps, due to binding energy of 
shell electrons, can be used for calibration!



Summary
• SuperCDMS SNOLAB is a world-leading DM direct detection 

experiment currently under construction, targeting sub-GeV DM
• Rapidly ramping up to commissioning phase
• Recent HV tower testing at CUTE marked the first operation of these 

detectors in underground low-background environment
• Several analyses of tower testing data in-progress to better 

understand the detectors
• Expecting early science results by next year!



@SuperCDMS https://www.snolab.ca/experiment/supercdms/
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