

Precision luminosity measurement at hadron colliders

Public defense presentation

Joanna Wańczyk (EPFL/CERN), Thesis directors: L. Shchutska (EPFL-LPHE), A. Dabrowski (CERN), Supervisors: T. Pieloni (EPFL-LPAP), D. Stickland (Princeton University).

Research and Technology

Outline of the presentation

- Introduction & motivation
- Monitor (BCM1F-utca) for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC)
- Luminosity measurement with the new Beam Conditions Beam-beam effects in the luminosity calibration Absolute luminosity scale calibration
- of BCM1F-utca for 2022 data set

Large Hadron Collider

n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

high magnetic field and large radius \rightarrow high energy $E = E_{beam1} + E_{beam2} = 13.6 \text{ TeV}$ \rightarrow smaller scales, heavier particles \rightarrow discovery of the Higgs boson

Large Hadron Collider

- DIY accelerator: bending, focusing, accelerating components
- beams divided into groups crossing each other resulting in billions of collisions per second
- many other elements providing high quality beams and diagnostic tools

LHC experiments

Luminosity

- 'collisions' too general for the field of particle physics
- need for quantity that describes the efficiency of the collider independently of a process $R = \mathscr{L}_{inst} \cdot \sigma_{ev}$
- can be maximized with machine parameters

$$\mathscr{L}_{inst} = \sum_{i}^{N_b} \frac{n_{1,i} n_{2,i} frev}{4\pi\sigma_x \sigma_y}$$

high integrated luminosity makes the observation significant

$$\mathscr{L}_{int} = \int_{0} \mathscr{L}_{inst} dt$$

Luminosity calibration

- van der Meer (vdM) scans are performed every year to obtain the detector-specific visible cross-section
- luminosity is a product of the colliding bunch-pair parameters:

$$\mathscr{L}_{inst}^{vdM} = \sum_{i}^{N_b} n_{1,i} n_{2,i} frev \iiint \int_{-\infty}^{+\infty} \rho_{1,i}(x, y, s, -s_0) \rho_{2,i}(x, y, s)$$

- beams are moved across each other by discrete separation steps
- the convolved transverse beam size can be extracted from the measured visible rate:

Luminosity calibration

- two scans in a pair for each of transverse directions and full overlap area
- the absolute head-on luminosity can be computed from the measured bunch parameters, and compared to the measured rate to infer the calibration constant:

$$\sigma_{vis} = \frac{R_0^{vis}}{\mathscr{L}_{inst}^{vdM}} = 2\pi \frac{R_0^{vis}}{n_1 n_2} \Sigma_x \Sigma_y \quad \rightarrow \mathscr{L}_{inst}^{phys} = \frac{R}{\sigma_{vis}}$$

- luminometer calibration can be used to measure luminosity at any conditions
- evaluation of biases from beam-related systematic effects such as the orbit drift, beam-beam interaction, etc.
 - calibration accuracy affected apply corrections
 - estimate systematic uncertainties down to 0.1%
- extended scan program used with multiple scans for dedicated studies as well as wide range of beam instrumentation

When the beams are brought into collision

 <u>expectation</u>: high energy collisions between two protons, p+p = Higgs signatures

 reality (for ~99.999..% of beam particles): the trajectory is changed due to the electromagnetic interaction with the opposing beam

Beam-beam interaction

- Beams are collections of charges that interact electromagnetically
- BB parameter ξ describes the linearized force for small amplitude particles
- single particle trajectory changed depending on its amplitude due to non-linear force

$$F_{\perp} = \pm \frac{Ne^2 (1 + \beta_{rel}^2)}{4\pi\epsilon_0 r} \left(1 - \exp\left[-\frac{r^2}{2\sigma^2}\right]\right),$$

- as a result, there is a tune spread in the beam $\Delta Q \sim \xi$
- COherent Multibunch Beam-beam Interactions (COMBI) code used to model

••••

Motivation of the thesis

- A well-designed luminometer is needed with minimized detectorrelated systematic effects
- Accurate luminosity calibration requires a thorough understanding of the beam-related systematic effects to correct for the biases:
 - motivates detailed studies of corrections and uncertainties related to beam-beam (BB) interaction @ multiple locations
 - experimental validation for simulation models for the effects on the luminosity

Precision luminosity measurement requirements

- single largest source of experimental uncertainty in the most precise SM measurements
- for example top quark pair production in the latest CMS publication, the 2.3% luminosity unc. dominates the total experimental uncertainty of 2.5% from other sources

 $R = \mathscr{L}_{inst} \cdot \sigma_{ev}$

will become even more important at HL-LHC 1% target for absolute Higgs couplings

Outline of the presentation

- Introduction & Motivation
- Luminosity measurement with the new **Beam Conditions Monitor (BCM1F-utca)** for the CMS experiment
- Beam-beam effects in the luminosity calibration
- Absolute luminosity scale calibration of BCM1F-utca for 2022 data set

CMS experiment luminometers

- Beam Radiation Instrumentation and Luminosity (BRIL) Project has the mandate of providing CMS with the luminosity measurement
- → 9 luminosity measurements
- → BCM1F is one of them
 - dedicated, standalone luminometer, operates independently from central CMS data acquisition system
 - sub-bunch crossing time resolution (< 1 ns), enables the measurement of beam-induced background

BCM1F-utca luminometer

- → Good performance achieved in Run 2 with the detector prototype:
 - mixed sensor types were used: diamonds and Silicon
 - signal-noise separation and response linearity much better for the Silicon sensors
 - stable operation, but data quality was limited
- Upgraded during Long Shutdown 2 for LHC Run 3:
 - new Silicon diodes
 - titanium circuit for active cooling to -20°C

BCM1F-utca luminometer

ionizing particle generates electrons and holes

Sensors:

- 290 um thick
- 1.7×1.7 mm² area
- AC-coupled

ADC amplitude

new derivativebased peak finding algorithm

ASIC:

- radiation-hard
- < 10 ns peaking time
- ~10 ns FWHM

15

Detector assembly

- laboratory tests for best-quality components
- each C-shape pair forms a ring around the beam pipe at a radius of 7 cm
- total of 48 channels (4x12)
- integration on a common carbon fiber carriage with the Pixel Luminosity Telescope (PLT) and Beam Conditions Monitor for Losses (BCML1)

diamond sensor (BCML1)

Nov.

2021

Detector installation

- <u>installation</u> behind the CMS pixel detector, on both ends
- <u>commissioning</u> of
 - new front-end during the 2021 LHC pilot beam test
 - new back-end during the 2022 LHC ramp up
- online <u>operations</u>

LHC Page1	F	ill: 9687		E: 450 C	jeV				29-05-	24 10	b
PROTON PHYSICS: SETUP											
I TI2:	1.76e+13	I B1:	0.00e+00		I T	18:	1.73e	+13	B2:	0.00)
TED TI2:		BE	АМ	TDISA B1	. gap/mm:	up	o: 7.06		dow	/n: 7	Ī
TED TI8:		BE	АМ	TDISA B2	gap/mm:	up	: 7.31		dow	/n: 7	
					BIS status a		flags			R1	
Comments	(29-May-2	024 10:40	6:04)		Link S	tatus of	Beam Pe	ermits	t	rue	
	_				GI	obal Bea	am Perm	nit	fa	alse	
Na	Problem	n in the bo	ooster	+		Setup	Beam		t	rue	
	Nex <u>t:</u>	2352 b <u>un</u>	ches			Beam P	resence		fa	alse	
					Movea	ble Devi	ices Allor -	wed In	fa	alse	
						Stable	Beams		fa	lse	
AFS: 25ns_2	352b_2340_	2004_2133	3_108bpi_24	4inj	PM Status B	1 EN	ABLED	PM Sta	tus B2	EN.	۵

Measurement with BCM1F

- Detector configuration optimized to measure direct collision products and beam induced background
- Additional out-of-time hit count requires corrections
- BCM1F has been operational including the

Outline of the presentation

- Introduction & motivation
- Luminosity measurement with the new Beam Conditions Monitor (BCM1F-utca) for the CMS experiment
- Beam-beam effects in the luminosity calibration
 - simulation studies for corrections and quantification of systematic effects in luminosity calibration
 - dedicated experiment at the LHC for correction model validation
- Absolute luminosity scale calibration of BCM1F-utca for 2022 data set

Beam-beam effects on luminosity

- Distinctive BB effects:
 - deflection induces change in the orbit
 - optical distortion induces changes in the beam widths (dynamic-beta)
 - amplitude-dependent changes

 arbitrary distribution → need
 for the lumi. integrator, COMBI
 development
- At the LHC opposite effects on luminosity
- Beam-separation dependent corrections
- Overall effect on the calibration constant slightly negative (sign and magnitude are tune-dependent)

beam size envelope

$$\sigma = \sqrt{\beta^* \times \epsilon_g}.$$

$$\frac{\Delta L}{L} \approx -\frac{1}{2} \frac{\Delta \beta_0}{\beta}.$$

for Gaussian particle distrib.

- H
- H
- H
- H
- H
- H
_
- H
- H
- H
- H
- H
- H
- H
- H
- H
 -41
- H
- H
- H
- H
- H
- H
-
-
-
-
C1 15

Beam-beam effects on luminosity

- Distinctive BB effects:
 - deflection induces change in the orbit
 - optical distortion induces changes in the beam widths (dynamic-beta)
 - amplitude-dependent changes

 arbitrary distribution → need
 for the lumi. integrator, COMBI
 development
- At the LHC opposite effects on luminosity
- Beam-separation dependent corrections
- Overall effect on the calibration constant slightly negative (sign and magnitude are tune-dependent)

beam size envelope

$$\sigma = \sqrt{\beta^* \times \epsilon_g}.$$

$$\frac{\Delta L}{L} \approx -\frac{1}{2} \frac{\Delta \beta_0}{\beta}.$$

for Gaussian particle distrib.

- H
- H
- H
- H
- H
- H
_
- H
- H
- H
- H
- H
- H
- H
- H
- H
 -41
- H
- H
- H
- H
- H
- H
-
-
-
-
C1 15

Beam-beam effects on luminosity calibration

 LHC working group effort including all experiments and accelerator experts

EPJ C	2022 Impact factor 4.	4					
Particles and Fields							
10 most recen	nt Browse issues Topical issues Reviews Letter	rs					
Open Access Eur. Phys. J. C (2024) 84 : 17 https://doi.org/10.1140/epjc/s10052-023-12192-5 Regular Article - Experimental Physics							
Impact of beam–beam effects on absolute luminosity calibrations at the CERN Large Hadron Collider							

(b) A. Babaev¹,
 (b) T. Barklow²,
 (c) O. Karacheban^{3,4},
 (c) W. Kozanecki⁵,
 (c) I. Kralik⁶,
 (c) A. Mehta⁷,
 (c) B. Pasztor⁷,
 (c) T. Pieloni^{8h},
 (c) D. Stickland⁹,
 (c) T. Tambasco⁸,
 (c) R. Tomas⁴ and
 (c) J. Wańczyk^{4,8}

- Extensions of this work:
 - Poster at IPAC'23
 - Talk at EPS'23

Contents

	1	Intr	oduction	4
	2	Lun	ninosity-calibration methodology	
		at t	he LHC	5
		2.1	Absolute luminosity scale from	-
		22	Beam conditions during van der	Э
		2.2	Meer scans	7
		2.3	Beam-beam-induced biases and	
			their correction $\ldots \ldots \ldots \ldots \ldots$	8
			2.3.1 Orbit shift	8
			2.3.2 Optical distortions	9
			2.3.3 Beam-beam correction	10
			strategy	10
	3	Bea	m-beam simulation codes	11
		3.1	Linear approximation with MAD-X	11
		3.2	Analytical estimate of optical dis-	
		9 9	tortions at zero beam separation .	12 14
		3.4	Strong-strong model: COMBL	15
		3.5	Cross-validation of simulation codes	16
			3.5.1 Beam-beam-induced orbit	
			${ m shift}$	16
			3.5.2 Impact of amplitude-	
			dependent β -beating effects	
			approximation	17
			3.5.3 Impact of optical distor-	
			tions on the beam-beam	
			$overlap \ integral \ . \ . \ . \ .$	18
			3.5.4 Beam-parameter depen-	
			dence of beam-beam	10
				10
1	4	Cal	culated impact of beam-beam	
		dyn	amics on luminosity calibrations	19
		4.1	Methodology	19
		4.2	beam-beam correction procedure	
			beam configuration	21
			4.2.1 Validation of the scaling	
			$hypothesis \ldots \ldots \ldots$	21
			4.2.2 Beam-beam parameter and	
			tune dependence of the	0.0
			4.2.2 Proctical implementation of	22
			4.2.3 Fractical implementation of parameterized beam-beam	
			corrections	23

		4.2.4	Separation-integrated esti- mates of beam-beam correc- tions to wdM calibrations	25
	4.3	Impact	of non-Gaussian upper-	20
	1.0	turbed	transverse beam profiles	27
		4.3.1	Single-bunch models	27
		4.3.2	Beam-beam-correction for-	
			malism in the presence of	
			non-factorization	28
		4.3.3	Impact of non-	
			Gaussian tails on	
			beam-beam-induced biases	29
	4.4	Impact	t of beam ellipticity at the	0.1
ľ	4.5	Interac	tion point	31
	4.0 4.6	Impact	of multiple interaction points	აა 35
	4.0	4 6 1	Motivation and methodology	35
		4.6.2	Impact of multiple inter-	00
			action points on the tune	
			spectra	36
		4.6.3	Comparison of reference	
			"no beam-beam" configura-	
			tions in the presence of one	
			non-scanning IP \ldots	37
		4.6.4	Sensitivity of beam-beam	
			corrections to the phase	
		105	advance between IPs	41
		4.6.5	Parameterization of multi-	49
		166	Penertical Research R	43
		4.0.0	strategies in the presence of	
			multi-IP collisions	45
	4.7	Impact	of beam-beam asymmetry .	47
		4.7.1	Beam-beam asymmetry	
			scenarios	47
		4.7.2	Parametric characterization	
			of beam-beam asymmetries	48
		4.7.3	Predicted impact of trans-	
			verse beam-size asymmetries	48
	Svet	omatic	uncortainties	52
	5.1	Ontica	l configuration	52
	0.1	5.1.1	β^* uncertainty at the scan-	
			ning IP	52
		5.1.2	Nominal collision tunes	53
	5.2	Deviat	ions from the fully symmet-	
		ric Gau	ussian-beam configuration .	54
		5.2.1	Non-Gaussian unperturbed	
			transverse-density profiles .	54
		5.2.2	Beam ellipticity at the scan-	
			ning IP	54

_		
	5.3	5.2.3 Non-zero crossing angle 5.2.4 Beam-beam imbalance Multiple interaction points
	5.4	Other potential sources of sys atic uncertainty
	5.5	Summary of systematic uncert
6	Sun	nmary and outlook

Multi-collision study for vdM calibration

- Starting point: correction model parametrizing the beam-beam effects on luminosity $\mathscr{L}/\mathscr{L}_0(\Delta, \xi, Q_x, Q_y)$
- contribution from the additional collisions at interaction points (IPs) other than the scanning IP <u>not considered previously</u>
 - simulation campaign to evaluate them
- additional collision = additional betatron tune shift
 - separation-dependent effect on luminosity depends on the collision configuration

0.980 0

1

whole bunch motion = coherent spectra

• • • •

Impact of multi-IP effects on luminosity calibration

- Luminosity bias correction model based on the single-IP parametrization dependent on beams separation Δ , BB parameter and tunes $\mathscr{L}/\mathscr{L}_0(\Delta, \xi, Q_x, Q_y)$
- effective multi-IP tune shift ΔQ_{mIP} can be used to obtain the equivalent σ_{vis} bias
- simple scaling law derived from strongstrong simulations:

 $\Delta Q_{\rm mIP} = -0.5 \times \xi \times N_{\rm NSIP}$

- valid for all LHC IPs
- verified in simulation for vdM regime ($\xi < 0.01$)

Outline of the presentation

- Introduction & motivation
- Luminosity measurement with the new Beam Conditions Monitor (BCM1F-utca) for the CMS experiment
- Beam-beam effects in the luminosity calibration
 - simulation studies for corrections and quantification of systematic effects in luminosity calibration
 - dedicated experiment at the LHC for correction model validation
- Absolute luminosity scale calibration of BCM1F-utca for 2022 data set

Beam-beam experiment results

- dedicated experiment at the LHC aimed at validation of the correction strategy used in the vdM calibration
- methodology using the witness IP with configuration changes at other location and optimized phase advances
- first measurement of the impact of BB effects on the luminosity at the LHC
- scaling law with BB parameter verified
 - very good agreement with simulation
 - stat. uncertainties could be rendered negligible if experiment could be repeated at nominal energy (both luminosity & σ_{vis} several times larger)

Outline of the presentation

- Introduction & motivation
- Luminosity measurement with the new Beam Conditions Monitor (BCM1F-utca) for the CMS experiment
- Beam-beam effects in the luminosity calibration
- Absolute luminosity scale calibration of BCM1F-utca for 2022 data set

LHC Page1	Fill: 8	381		E: 6800	GeV t(5B): 03:	54:34	11	1-11-22	00:26:24
	PRO	TON	PH	YSICS:	STABL	e be	AM	S		
Energy:	6799	GeV	I,	B1:	1.36e+1	3	I B	2:	1.37	'e+13
Beta* IP1:	19.20 m	Beta	* IP2:	19.20 m	Beta* IP5	19.2	0 m	Beta [×]	* IP8:	24.00 m
Inst. Lumi [(ub.s)^-1]		IP1:	18.80	IP2: 0.2	5	IP5:	15.95	IP8	3: 1.46
1.4E13 1.2E13 1.2E13 1E13 3E12 6E12 4E12 2E12 0E0 01:00	05:00 09:00	13:00 17:	00 21:0	7000 -6000 -5000 -4000 Solution -3000 -3000 -2000 -1000 -0 00	T 18 16 14 12 10 14 12 10 14 12 10 14 12 10 14 12 10 14 12 10 14 12 10 14 12 10 10 12 10 10 10 10 10 10 10 10 10 10	0 07:00 CE — CMS	10:00 — LHCI	13:00 16:0		22:00
Como en te /11	1 Nev 2022	00.17.1	43		BIS status and	I SMP fla	gs		B1	B2
<u>Fill</u>	I #2 (146 <u>b)</u>	for Vd <u>M</u>	scans		Cink Star Glob	us of Beam al Beam	am Pe Perm	it	true	true
	CMS part	1 (~3h)		Be	Setup Be eam Pres	am ence		false true	false true
next LH	t: ATLAS (~4 ICb (~1.5h),	lh), CMS ATLAS	5 (~3h (~4h)).	Moveable	e Devices table Bea	s Allov ams	ved In	true true	true true
AES: 525mc 1/4	ch 144 25 22	Ohni 20	ini nor	local D	DM Status P1	ENIADI	ED	DM Statu		NABLED

BCM1F-utca vdM calibration corrections

- Detector specific
 - high sensitivity to beam background
 - measured in superseparation $\approx 7\sigma$
- Beam-related
 - bunch-charge: per bunch (FBCT) measurement normalised to full beam current (DCCT) + ghosts & satellite corrections
 - beam position: lengthscale, linear & residual drifts corrections
 - non-factorisation of the transverse distributions
 - beam-beam effects

→ new corrections shift the result with respect to the past by +1%

Integration of 2022 luminosity

Very good overall 2022 data quality

BCM1F-utca compared to other available CMS luminom. for total 2022 data sample (HFET, DT, PCC...) Non-linearity estimated from comparisons to other reliable systems

- assumption needed on a perfect luminometer (3 independent CMS systems used)
- BCM1F-utca non-linearity measured below 0.1%/SBIL

Relative linearity across SBIL 4-11 [Hz/ub] with reference to Remus

Dedicated beam-beam corrections

 emittance scan is a transverse beam separation scan in physics conditions, primarily designed to measure emittance

- equivalent of the calibration constant $\sigma_{vis}^{emit.}$ from
 - emittance scans with reference to σ_{vis} measured in vdM calibration
- COMBI upgrades are useful to produce dedicated corrections - minimising the associated extra systematic from per bunch differences

Impact of beam-beam on measured linearity

Independent measurement \rightarrow further studies needed for precise measurement

perfectly linear luminometer = flat response across SBIL

- main contributions to the measured non-linearity:
 - apparent BB-induced slope removed with COMBI simulation
 - intrinsic detector response inefficiencies
- possible additional biases from non-factorisation
- challenging fit quality
- operational limitations to be improved in the future

Final BCM1F-utca calibration results

- Overview of all the contributions to the final systematic uncertainty
- preliminary result already at 1.3%
 - in the past typically > 2%
- can be directly combined with Run 2 data samples
- possible further improvement with extended analysis of non-factorisation and detector data
- demonstration that BCM1F-utca can be used as the primary luminometer

Source	Uncertainty (%)
Calibration	
Background	0.1
Beam current	0.2
Ghosts & satellites	0.15
Orbit drift	0.1
Residual beam positions	0.33
Beam-beam effects	0.37
Length scale	0.12
Factorization bias	0.8
Scan-to-scan variation*	0.42
Bunch-to-bunch variation*	0.05
Cross-detector consistency*	0.2
Integration	
Afterglow corrections*	0.1
Cross-detector stability*	0.45
Cross-detector linearity	0.54
Calibration	1.1
Integration	0.7
Total	1.3

*indicates differences with respect to the CMS LUM PAS 2022

Conclusions (1/2)

- → The upgraded BCM1F was built, installed and commissioned successfully
- → Since the beginning of LHC Run 3, it has proven to be robust and reliable, the configuration was optimised, with the focus of employing the new peak finding algorithm
- → It has continuously provided CMS and LHC with:
 - online beam-induced background, and luminosity measurements
 - regular emittance scans allow for independent, non-destructive transverse-profile and orbit-shift measurements on a bunch-bybunch basis
- → BCM1F-utca performance was investigated to achieve the best precision in luminosity measurement:
- corrections for both vdM and nominal physics conditions were derived
- first vdM calibration was performed at the end of 2022 resulting in a luminosity measurement with a very competitive systematic uncertainty of 1.3%

Conclusions (2/2)

- Extensive simulations of BB effects on the luminosity led to a much better understanding, minimising the related systematic uncertainty on absolute luminosity calibrations
- Improved corrections by accounting for the multiple collisions
 - additional ~0.4% correction for typical $\xi = 0.003$
 - methodology applicable to all LHC experiments
- Dedicated BB experiment at the LHC allowed to validate some key aspects of the simulation model
 - first measurement of the BB-induced biases on luminosity at the LHC
 - agreement with the simulation to the level of 0.1%
- Beam-beam simulation model improvements allow for dedicated corrections at the physics conditions
 - possible to remove the apparent beam-beam induced slope for measuring intrinsic detector non-linearities in an independent way
 - valuable for HL-LHC studies with high pile-up
- The results apply to any current and future hadron colliders, for example FCC-hh

Backup - motivation

top quark pair production cross section systematic uncertainty table

Source	Uncertainty (%)	
Lepton ID efficiencies	1.6	
Trigger efficiency	0.3	
JES	0.6	
b tagging efficiency	1.1	
Pileup reweighting	0.5	nrodu
ME scale, $t\bar{t}$	0.5	produ
ME scale, backgrounds	0.2	Section
ME/PS matching	0.1	
PS scales	0.3	
PDF and $\alpha_{\rm S}$	0.3	
Top quark <i>p</i> _T	0.5	
tW background	0.7	
<i>t</i> -channel single-t backgroun	d 0.4	
Z+jets background	0.3	
W+jets background	< 0.1	
Diboson background	0.6	
QCD multijet background	0.3	
Statistical uncertainty	0.5	
Combined uncertainty	2.5	
Integrated luminosity	2.3	

Z boson ction cross uncertainty

The new BCM1F-utca peak finding algorithm

- New peak finding algorithm designed to differentiate the overlapping pulses to maintain the detection efficiency at high pileup:
 - derivative calculated with a smooth noise-robust

differentiator (N=7):

 $\frac{5(f_1 - f_{-1}) + 4(f_2 - f_{-2}) + f_3 - f_{-3}}{32h}$

- designed to provide noise suppression at high freq. with efficient implementation into a digital system.
- peak detection based on the derivative threshold level crossing,
- further noise separation based on the low value of the signal derivative, and by applying the amplitude cut off.
- The amplitude spectrum is a Landau distribution with the most probable value corresponding to the energy loss of the minimum-ionizing particle. The low amplitude Gaussian noise contribution removed with back-end thresholds.

BCM1F-utca measurements

- → luminosity measurement is based on the sum of counts within a colliding BCID,
- \rightarrow zero counting algorithm is used:

$$\mu = -\ln \left[p(0) \right] = -\ln \left[1 - p(n \neq 0) \right] = -\ln \left[1 - \frac{N_h}{N_h} \right]$$

- → BCM1F has been the main online luminometer since the beginning of the LHC commissioning period for Run 3,
- BIB particles are measured by different BCM1F channels, based on their location with reference to the CMS IP and the particle arrival time,
- based on the BCM1F background measurements are used to assess beam conditions \rightarrow guarantee safe operation for the other CMS subsystems.
- Real-time feedback of the beam conditions prevalent close to the CMS experiment to the LHC.
- Additionally, per-bunch orbit displacement and transverse widths can be measured with high accuracy in beams separation scans.

Backup - simulation studies

phase advance luminosity changes different for scanning and the witness IP

COMBI Model development needed to study the impact of crossing-angle configurations

Additional beam-beam induced bias in the configuration with the crossing-angle, <u>non-negligible</u> even at high β^*

Simulation model benchmark experiment

- Test specifically designed to measure BB effects
- idea to use one of the IPs as 'the witness' (observer) to enable observations of beam-beam induced luminosity shifts
- phase advance between IP1 & IP5 optimized for maximizing the effect on luminosity at the witness IP at injection energy $(1 \rightarrow 3\%)$
 - lattice validated up to 1°
- dedicated physics time in 2022 LHC commissioning, BB experiment valuable for all LHC experiments
- multiple instruments were used to measure the BB effects:
 - Iuminosity from ATLAS and CMS Iuminometers
 - tune spectra (Q_x, Q_y)
 - transverse beam sizes σ with synch. light monitors and wire scanners
 - orbit at the IPs with BPMs

BB experiment: results (2)

- observations of BB-induced changes during a separation scan
 - very clear on the mean tunes extracted from the spectra
- observed scaling with the number of collision supports the multi-IP modeling strategy
- overall good agreement of all beam-beam tests with expectations
- quality of the results can be improved by optimized scan program

Backup - BB experiment results (3)

- beam width changes caused by moving IP1 from fully separated to head-on position, as measured by synchrotron light monitor and compared to COMBI
- the most significant effect in B2V with smallest uncertainty (from phase advance set point)
- phase advances could be further optimized for the observations at the synch. light monitor
 - potentially useful to reduce systematic error in standard operation

BACKUP - coherent modes

Tune spectra show coherent modes beam-beam interaction additionally couples bunches

- effective suppression of coherent modes
 - easier analysis of the spectra

min. \rightarrow max. phase = phase optimisation

BACKUP - beam-beam experiment

- optics requirement for high crossing-angle at IP2 reduces the observable effect,
 - phase advances not optimised giving different results for different observer IP,
- most of the observations on luminosity in agreement with predictions within 1%.

1.01 1.00 (0.99 0.96 0.97 0.96 0.95 0.95 0.94

Luminosity changes during a separation scan

Outlook

- BCM1F-utca performance
 - application of the per channel efficiency corrections from amplitude analysis
 - simulation studies of prompt background source for afterglow components
 - automatisation and centralisation of performance tools
- Simulations
 - dedicated corrections for emittance scans with trains
 - insights for HL-LHC
 - dedicated corrections for non-factorisation scans
- BB Experiment
 - better precision needed for verification of correction dependence on the separation steps
 - optimising the phase advances for all BSRT observations
 - detailed consideration of the systematic effects

