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t ̄tH production at the LHC
At the tree level:

�̄�
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gluon channel

First observation at LHC reported in 2018. [ATLAS ’17, ’17, ’18, ’20, ’23; CMS ’18, ’18, ’20, ’20, ’22]
Measurements based on data from LHC Run 2 (2015–2018):

𝜎𝑡 ̄𝑡𝐻/𝜎𝑡 ̄𝑡𝐻,SM ℒ 𝐻 decay channels

ATLAS ’18 1.32 +0.18
−0.18 (stat)

+0.21
−0.19 (syst) 79.8 fb−1 𝛾𝛾, 𝑏𝑏,𝑊𝑊 , 𝑍𝑍

ATLAS ’20 1.43 +0.33
−0.31 (stat)

+0.21
−0.15 (syst) 139 fb−1 𝛾𝛾

CMS ’20 1.38 +0.29
−0.27 (stat)

+0.21
−0.11 (syst) 137 fb−1 𝛾𝛾

CMS ’20 0.92 +0.19
−0.19 (stat)

+0.17
−0.13 (syst) 137 fb−1 𝑊𝑊 , 𝜏𝜏, 𝑍𝑍

HL-LHC will haveℒ ∼ 3000 fb−1, reducing statistical uncertainty by 4-5x.
To reduce systematic uncertainty: NNLO calculation is needed.

[HL-LHC ’19; Les Houches ’21; Snowmass ’22]

https://arxiv.org/abs/1712.08891
https://arxiv.org/abs/1712.08895
https://arxiv.org/abs/1806.00425
https://arxiv.org/abs/2004.04545
https://arxiv.org/abs/2303.05974
https://arxiv.org/abs/1803.05485
https://arxiv.org/abs/1804.02610
https://arxiv.org/abs/2003.10866
https://arxiv.org/abs/2011.03652
https://arxiv.org/abs/2208.02686
https://arxiv.org/pdf/1902.00134
https://arxiv.org/abs/2207.02122
https://cds.cern.ch/record/2805993
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Parts of an NNLO calculation
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Big missing part for NNLO: two-loop virtual amplitudes.
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Theory results for t ̄tH production
NLO:

* NLO QCD [Beenakker, Dittmaier, Krämer, Plümper, Spira, Zerwas ’01]

[Reina, Dawson ’01]

[Reina, Dawson, Wackeroth ’01]

[Beenakker, Dittmaier, Krämer, Plümper, Spira, Zerwas ’02]

[Dawson, Orr, Reina, Wackeroth ’02]

[Dawson, Jackson, Orr, Reina, Wackeroth ’03]

* NLO QCD, parton shower [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli ’11]

[Garzelli, Kardos, Papadopoulos, Trocsanyi ’11]

[Hartanto, Jager, Reina, Wackeroth ’15]

* NLO EW [Frixione, Hirschi, Pagani, Shao, and Zaro ’14]

* NLO QCD+EW, NWA [Zhang, Ma, Zhang, Chen, Guo ’14]

[Frixione, Hirschi, Pagani, Shao, and Zaro ’15]

* NLO QCD, off-shell [Denner, Feger ’15]

[Stremmer, Worek ’21]

[Denner, Lang, Pellen ’20]

[Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek ’22]

https://arxiv.org/abs/hep-ph/0107081
https://arxiv.org/abs/hep-ph/0107101
https://arxiv.org/abs/hep-ph/0109066
https://arxiv.org/abs/hep-ph/0211352
https://arxiv.org/abs/hep-ph/0211438
https://arxiv.org/abs/hep-ph/0305087
https://arxiv.org/abs/1104.5613
http://arxiv.org/abs/1108.0387
http://arxiv.org/abs/1501.04498
http://arxiv.org/abs/1407.0823
http://arxiv.org/abs/1407.1110
http://arxiv.org/abs/1504.03446
http://arxiv.org/abs/1506.07448
http://arxiv.org/abs/2111.01427
https://arxiv.org/abs/2008.00918
https://arxiv.org/abs/2202.11186
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Theory results for t ̄tH production, II

NLO, contd.:

* NLO+NLL QCD [Kulesza, Motyka, Stebel, Theeuwes ’15]

[Ju, Yang ’19]

* NLO+NNLL QCD [Broggio, Ferroglia, Pecjak, Signer, Yang ’15]

[Broggio, Ferroglia, Pecjak, Yang ’16]

[Kulesza, Motyka, Stebel, Theeuwes ’17]

[Kulesza, Motyka, Schwartländer, Stebel, Theeuwes ’20]

* NLO QCD+SMEFT [Maltoni, Vryonidou, Zhang ’16]

* NLO QCD+EW, off-shell [Denner, Lang, Pellen, Uccirati ’16]

* NLO+NNLL QCD+EW [Broggio, Ferroglia, Frederix, Pagani, Pecjak, Tsinikos ’19]

* NLO QCD to 𝒪 (𝜀2) [Buccioni, Kreer, Liu, Tancredi ’23]

* 𝑡 → 𝐻 fragmentation functions at 𝒪 (𝑦2𝑡𝛼𝑠)
[Brancaccio, Czakon, Generet, Krämer ’21]

http://arxiv.org/abs/1509.02780
https://arxiv.org/abs/1904.08744
http://arxiv.org/abs/1510.01914
https://arxiv.org/abs/1611.00049
https://arxiv.org/abs/1704.03363
https://arxiv.org/abs/2001.03031
https://arxiv.org/abs/1607.05330
http://arxiv.org/abs/1612.07138
http://arxiv.org/abs/1907.04343
https://arxiv.org/abs/2312.10015
https://arxiv.org/abs/2106.06516
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Theory results for t ̄tH production, III

NNLO:

* NNLO QCD, flavour off-diagonal [Catani, Fabre, Grazzini, Kallweit ’21]

* NNLO QCD total cross-section, soft Higgs
[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini ’22]

* Two-loop QCD virtual amplitude, IR poles [Chen, Ma, Wang, Yang, Ye ’22]

* Leading𝑁𝑐 two-loop QCD master integrals, 𝑛𝑙-part
[Cordero, Figueiredo, Kraus, Page, Reina ’23]

* Two-loop QCD virtual amplitude, high-energy boosted limit
[Wang, Xia, Yang, Ye ’24]

* Two-loop QCD virtual amplitude, 𝑞�̄� channel, 𝑛𝑙- and 𝑛ℎ-parts
[Agarwal, Heinrich, Jones, Kerner, Klein, Lang, V.M., Olsson ’24]

http://arxiv.org/abs/2102.03256
https://arxiv.org/abs/2210.07846
https://arxiv.org/abs/2202.02913
https://arxiv.org/abs/2312.08131
https://arxiv.org/abs/2402.00431
https://arxiv.org/abs/2402.03301
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The amplitude
Model: QCD with a scalar𝐻, 𝑛𝑙 light (massless) quarks, 𝑛ℎ heavy (top) quarks.
Amplitude of 𝑞�̄� → 𝑡 ̄𝑡𝐻 projected onto Born, and decomposed in 𝛼𝑠 as

⟨AMP | AMPtree⟩ = 𝒜 +  𝛼𝑠2𝜋
ℬ +  𝛼𝑠2𝜋


2
𝒞 .

As a proof-of-concept: only parts proportional to 𝑛𝑙 or 𝑛ℎ in𝒞 for now.
Why is the calculation complicated?
1. IBP reduction of the amplitude to master integrals is too complicated to
be computed symbolically (at the moment).

* 5 legs and 2 masses (𝑚𝑡,𝑚𝐻)⇒ 7 scales (6 scaleless variables).

2. Massive two-loop integrals contributing to𝒞 are not known analytically.

…
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Calculation method

1. Generate all Feynman diagrams for 𝑞�̄� → 𝑡 ̄𝑡𝐻 at two loops. [QGRAF]

⇒ 249 non-zero diagrams (of 702 for the full 𝑞�̄� channel).
2. Insert Feynman rules, apply the projector | AMPtree⟩. [ALIBRARY]

3. Sum over the spinor and color tensors. [FORM; COLOR.H]

⇒ ∼20000 scalar integrals (of ~90000);
⇒ 9 structures: {𝑛ℎ|𝑛𝑙} 𝐶𝐴𝐶𝐹𝑁𝑐, {𝑛ℎ|𝑛𝑙} 𝐶2𝐹𝑁𝑐, {𝑛ℎ|𝑛𝑙} 𝑑33, {𝑛ℎ|𝑛𝑙}2 𝐶𝐹𝑁𝑐;

* 6 structures not included: 𝐶2𝐴𝐶𝐹𝑁𝑐, 𝐶𝐴𝐶2𝐹𝑁𝑐, 𝐶3𝐹𝑁𝑐, 𝐶𝐴𝑑33, 𝐶𝐹𝑑33, 𝑑44.
4. Resolve integal symmetries, construct integral families. [FEYNSON; ALIBRARY]

⇒ 44 families, 28 up to external leg permutation (of 89 and 39).
5. Figure out master integral count in each sector. [KIRA]

⇒ 831 master integrals in total (of 3005 for the full 𝑞�̄� channel);
⇒ up to 8 integrals per sector (up to 13 for the full 𝑞�̄� channel).

…

http://cfif.ist.utl.pt/~paulo/qgraf.html
https://github.com/magv/alibrary
https://www.nikhef.nl/~form/
https://www.nikhef.nl/~form/maindir/packages/color/color.html
https://github.com/magv/feynson
https://github.com/magv/alibrary
https://kira.hepforge.org/
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Calculation method, II

6. Choose a good master integral basis, allowing raised denominator
powers and dimensional shifts.

7. Generate IBP relations, dimensional recurrence relations. [KIRA; ALIBRARY]

8. Precompute (“trace”) the IBP solution for each family with Rational Tracer.
[RATRACER]

9. Precompile the pySECDEC integration library for the amplitude pieces.
[pySECDEC]

* Each color structure as a separate weighted sum of the master integrals.
10. For each point in the phase space:

10.1 Solve IBP relations using the precomputed trace (with RATRACER).
* Each Mandelstam variable set to a rational number.

10.2 Evaluate the amplitudes as weighted sums of masters (with pySECDEC).
* The weights are taken from the IBP solution.

10.3 Apply renormalization and pole subtraction.
[Ferroglia, Neubert, Pecjak, Yang ’09; Bärnreuther, Czakon, Fiedler ’13]

10.4 Save the result.

https://kira.hepforge.org/
https://github.com/magv/alibrary
https://github.com/magv/ratracer
https://github.com/gudrunhe/secdec
https://arxiv.org/abs/0908.3676
https://arxiv.org/abs/1312.6279
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Choosing the master integrals
A good basis of master integrals optimizes the IBP solution time and the
pySECDEC evaluation time. Our choice:

* is quasi-finite, [von Manteuffel, Schabinger ’14]

* is 𝑑-factorizing, [Smirnov, Smirnov ’20; Usovitsch ’20]

* results in IBP coefficients with small denominators,

* avoids 𝜀 poles in the coefficients of top-level sectors,
* avoids 𝜀 poles in the differential equation matrix,
* is fast to evaluate with pySECDEC.
⇒ Need to consider denominator powers raised up to 6,

and dimensional shifts to 𝑑 = 6 − 2𝜀 and 𝑑 = 8 − 2𝜀.
To illustrate, pySECDEC integration time to 10−3 precision:1

𝑚𝑊
𝑚𝑍 𝜀−2…𝜀0 >2h 𝑚𝑊

𝑚𝑍 𝜀−2…𝜀0 20m

𝑚𝑊
𝑚𝑍 𝜀−2…𝜀0 1m 𝑚𝑊

𝑚𝑍 𝜀−3…𝜀0 27s

1pySECDEC 1.5.3, NVidia A100 GPU.

https://arxiv.org/abs/1406.4513
https://arxiv.org/abs/2002.08042
https://arxiv.org/abs/2002.08173


11

IBP relations with RATRACER
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IBP relations
An IBP integral family with 𝐿 loop momenta 𝑙𝑖, and 𝐸 external momenta 𝑝𝑖, is
the set of Feynman integrals

𝐼𝜈1,𝜈2,…,𝜈𝑁 ≡ 
d𝑑 𝑙1⋯d𝑑 𝑙𝐿
𝐷𝜈1
1 ⋯𝐷𝜈𝑁

𝑁
, 𝐷𝑖 ≡ 𝑙𝑗 ± 𝑝𝑘 ± … 

2
− 𝑚2

𝑖 + 𝑖0,

where 𝜈𝑖 are the “indices”, the𝐷𝑖 are the “denominators”.

The idea: shifting 𝑙𝑘 by any vector 𝑣 should not change 𝐼:

lim
𝛼→0

𝜕
𝜕𝛼𝐼(𝑙𝑘 → 𝑙𝑘 + 𝛼𝑣) = d𝑑 𝑙1⋯d𝑑 𝑙𝐿

𝜕
𝜕𝑙𝜇𝑘

𝑣𝜇

𝐷𝜈1
1 …𝐷

𝜈𝑁
𝑁

= 0.

These are the IBP relations, valid for all 𝑘 and all 𝑣, 𝐿 (𝐿 + 𝐸) in total.

* * *

Example. For 𝐼𝑎,𝑏,𝑐 ≡ 𝑎
𝑏

𝑐
, if we choose 𝑘 = 1 and 𝑣 = 𝑙1, we will get

(𝑑 − 2𝑎 − 𝑏 − 𝑐)𝐼𝑎,𝑏,𝑐 − 𝑐 𝐼𝑎−1,𝑏,𝑐+1 − 𝑏 𝐼𝑎−1,𝑏+1,𝑐 = 0.
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Laporta algorithm

To solve IBP relations in practice use the Laporta algorithm: [Laporta ’00]

1. Substitute integer values for the indices 𝜈𝑖 into the IBP relations,
obtaining a large linear system with many different 𝐼𝜈1…𝜈𝑁 .

2. Define an ordering on 𝐼𝜈1…𝜈𝑁 from “simple” to “complex” integrals.
3. Perform Gaussian elimination on the linear system, eliminating the most
“complex” integrals first.

4. A small number of “simple” integrals will remain uneliminated.
⇒ These are the master integrals. The rest will be expressed as their linear

combinations.

http://arxiv.org/abs/hep-ph/0102033
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Software for solving IBPs
IBP solvers not using modular arithmetic:

* REDUZE 2. [von Manteuffel, Studerus ’12]

* LITERED (useful Mathematica functions, required by FIRE). [Lee ’13]

* FORCER (for massless 2-point functions). [Ruijl, Ueda, Vermaseren ’17]

IBP solvers that use modular arithmetic:

* FINRED (a private implementation). [von Manteuffel et al]

* FIRE6. [Smirnov, Chuharev ’19]

* Does not provide multivariate reconstruction.

* KIRA when used with FIREFLY.
[Klappert, Lange, Maierhöfer, Usovitsch ’20; Klappert, Klein, Lange ’20]

* FINITEFLOW (a library for arbitrary computations). [Peraro ’19]

* CARAVEL (a library for amplitude computations). [Cordero, Sotnikov et al ’20]

* RATRACER (with KIRA and FIREFLY). [V.M. ’22]

... and multiple others.

https://reduze.hepforge.org
https://arxiv.org/abs/1201.4330
https://www.inp.nsk.su/~lee/programs/LiteRed/
https://arxiv.org/abs/1310.1145
https://github.com/benruijl/forcer
https://arxiv.org/abs/1704.06650
https://bitbucket.org/feynmanIntegrals/fire/
http://arxiv.org/abs/1901.07808
https://gitlab.com/kira-pyred/kira
https://gitlab.com/firefly-library/firefly
http://arxiv.org/abs/2008.06494
https://arxiv.org/pdf/2008.06494
https://github.com/peraro/finiteflow
http://arxiv.org/abs/1905.08019
https://gitlab.com/caravel-public/caravel
http://arxiv.org/abs/2009.11957
https://github.com/magv/ratracer
https://arxiv.org/abs/2211.03572
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Modular arithmetic methods
To find a symbolic form of a rational function 𝑓(𝑥1, … , 𝑥𝑁):

* Evaluate 𝑓 modulo a prime number many times, with 𝑥𝑖 set to integers.
* Reconstruct the exact symbolic form of 𝑓 from the obtained values.

Example: if we have an unknown 𝑓(𝑥), and we have evaluated
𝑓(11) = 139 (mod 997) ,
𝑓(38) = 350 (mod 997) ,

𝑓(65) = 479 (mod 997) ,
𝑓(92) = 115 (mod 997) ,

then we can use polynomial interpolation to find a polynomial form of 𝑓:
𝑓(𝑥) = 618 + 979 𝑥 + 486 𝑥2 + 41 𝑥3 (mod 997) ,

and then rational function reconstruction to find an equivalent rational form:

𝑓(𝑥) = 996 + 333𝑥
1 + 𝑥 (mod 997) ,

and finally rational number reconstruction to find the rational coefficients:

𝑓(𝑥) =
−1 + 2

3𝑥
1 + 𝑥 (mod 997) .

Guess that this is the true form of 𝑓(𝑥); evaluate more times to verify.
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IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 2𝑝1𝑝2 = 𝑠.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0
𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0

−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

After Gaussian elimination (2 operations):
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1/(𝑑 − 6) −1/(𝑑 − 6) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0
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IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 2𝑝1𝑝2 = 𝑠.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0
𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0

−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

After Gaussian elimination (5 operations):
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −2/(𝑑 − 6) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0



15

IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 2𝑝1𝑝2 = 𝑠.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0
𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0

−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

After Gaussian elimination (11 operations):
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2/((𝑑 − 6) 𝑠) 2/((𝑑 − 6) 𝑠) ⋅
⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1/𝑠 1/𝑠 ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1/𝑠 1/𝑠 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0
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IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 2𝑝1𝑝2 = 𝑠.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0
𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0

−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

After Gaussian elimination (108 operations, ∼ 𝑁2
integrals):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −4(𝑑 − 3)/((𝑑 − 6) 𝑠2)
⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2(𝑑 − 3)/𝑠2
⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2(𝑑 − 3)/𝑠2
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2(𝑑 − 3)/((𝑑 − 4) 𝑠)
⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑑 − 3)(𝑑 − 2)/(4𝑠)
⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑑 − 3)(𝑑 − 2)/(4𝑠)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑑 − 4)(𝑑 − 3)/(2𝑠)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2 − 𝑑)/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2 − 𝑑)/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ −(𝑑 − 4)(𝑑 − 3)/(2𝑠2)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ −(𝑑 − 4)(𝑑 − 3)/(2𝑠2)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ −(𝑑 − 6)(𝑑 − 3)/𝑠2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ (𝑑 − 3)/𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 (𝑑 − 3)/𝑠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 ⟺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4(𝑑 − 3)/((𝑑 − 6) 𝑠2)
2(𝑑 − 3)/𝑠2
2(𝑑 − 3)/𝑠2

−2(𝑑 − 3)/((𝑑 − 4) 𝑠)
−(𝑑 − 3)(𝑑 − 2)/(4𝑠)
−(𝑑 − 3)(𝑑 − 2)/(4𝑠)
−(𝑑 − 4)(𝑑 − 3)/(2𝑠)

−(2 − 𝑑)/2
−(2 − 𝑑)/2
−𝑠/2

(𝑑 − 4)(𝑑 − 3)/(2𝑠2)
(𝑑 − 4)(𝑑 − 3)/(2𝑠2)
(𝑑 − 6)(𝑑 − 3)/𝑠2
−(𝑑 − 3)/𝑠
−(𝑑 − 3)/𝑠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐼0,1,1
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Optimizing the modular Gaussian elimination
When performing Gaussian elimination one needs to:

* Represent the equation set as a sparse matrix data structure.
* Keep the equations sorted.
* Keep terms in each equation sorted.
* Adjust the layout (and maybe reallocate memory) after each operation.

* This is not much work, but modular arithmetic is even less work!

IBP solvers using modular arithmetics will:

* Recreate the same data structures, same memory allocations, in the
same order during each evaluation, many times.

* Only the modular values (small integers) change between evaluations.

* Spend relatively little time on actual modular arithmetic.
* Because it is so fast!

How to speed this up? Eliminate the data structure overhead:

* Record the list of arithmetic operations performed during the first
evaluation (“a trace”).

* Simply replay this list for subsequent evaluations.
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Rational traces

For 𝐼𝑎,𝑏,𝑐(𝑠, 𝑑) ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
the trace of the IBP solution might look like:

t0 = var 'd'

t1 = int 4

t2 = sub t0 t1

t3 = int 1

t4 = var 's'

t5 = neg t4

t6 = int 6

t7 = sub t0 t6

t8 = int -1

t9 = int 2

t10 = int -2

t11 = sub t0 t9

t12 = int 3

t13 = sub t0 t12

t14 = mul t4 t10

t15 = neginv t5

t16 = mul t4 t15

t17 = sub t8 t16

t18 = mul t5 t16

t19 = neginv t17

t20 = mul t7 t19

[...]

t54 = addmul t53 t27 t44

t55 = mul t25 t44

t56 = addmul t55 t25 t44

t57 = mul t23 t44

t58 = addmul t57 t23 t44

t59 = mul t20 t58

t60 = mul t16 t59

save t60 as CO[I[1,1,2],I[0,1,1]]

save t59 as CO[I[1,2,1],I[0,1,1]]

save t58 as CO[I[2,1,1],I[0,1,1]]

save t56 as CO[I[1,1,1],I[0,1,1]]

save t54 as CO[I[-1,1,3],I[0,1,1]]

save t52 as CO[I[-1,2,2],I[0,1,1]]

save t51 as CO[I[-1,3,1],I[0,1,1]]

save t46 as CO[I[0,1,3],I[0,1,1]]

save t49 as CO[I[0,2,2],I[0,1,1]]

save t47 as CO[I[-1,1,2],I[0,1,1]]

save t46 as CO[I[0,3,1],I[0,1,1]]

save t42 as CO[I[-1,2,1],I[0,1,1]]

save t44 as CO[I[0,1,2],I[0,1,1]]

save t44 as CO[I[0,2,1],I[0,1,1]]

save t45 as CO[I[-1,1,1],I[0,1,1]]
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Rational traces

For 𝐼𝑎,𝑏,𝑐(𝑠, 𝑑) ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
the trace of the IBP solution might look like:
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CO[I[-1,1,3],I[0,1,1]]
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CO[I[0,1,2],I[0,1,1]] CO[I[0,2,1],I[0,1,1]]

CO[I[-1,1,1],I[0,1,1]]
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RATRACER overview

RATRACER (“Rational Tracer”): a program for solving systems of linear equations
using modular arithmetic based on rational traces. [V.M. ’22]

* Can trace the solution of arbitrary systems of linear equations: IBP
relations, dimensional recurrence relations, amplitude definitions, etc.

* Can optimize and transform traces.

* Always keeps traces on disk, not limited by RAM size.

* Uses FIREFLY for reconstruction. [Klappert, Klein, Lange ’20, ’19]

* Initially created for solving IBPs for massive 5-point 2-loop diagrams.

* Available at github.com/magv/ratracer.
Intended usage:
1. Use KIRA (or LITERED, or custom code) to export IBP relations to text files.
2. Use RATRACER to load them and solve them.

https://arxiv.org/abs/2211.03572
https://arxiv.org/abs/2004.01463
https://arxiv.org/abs/1904.00009
https://github.com/magv/ratracer
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RATRACER benchmarks

For IBP reduction of every integral (i.e. not single amplitudes):

Evaluation
𝑡reconstruction
𝑡evaluation

Total Total Total
speedup vs. speedup vs. speedup vs. speedup
KIRA+FIREFLY KIRA+FIREFLY KIRA+FERMAT vs. FIRE6

𝑚1

𝑚1
𝑚2 20 3.3 5.2 1.2 ∞?

𝑚1𝑚2 7.8 1/3.3 6.0 37 ∞?
𝑠

𝑚1

𝑚2

26 25 1.7 1/3.3 1.8

𝑚 9.6 8.8 5.2 2.6 8.8

[github.com/magv/ibp-benchmark]
Resulting performance:

* Consistent ~10x speedup in modular evaluation over KIRA+FIREFLY.

* Up to ~5x speedup in total reduction time over KIRA+FIREFLY for
complicated examples, 1x-30x over KIRA+FERMAT,∞x over FIRE6.

https://github.com/magv/ibp-benchmark
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Trace transformations

Given a trace, RATRACER can:

* Set some of the variables to expressions or numbers.
* E.g. set mh2 to “12/23*mt2”, d to “4-2*eps”, or s to “13600”.
* No need to remake the IBP system just to set a variable to a number.

* Select any subset of the outputs, and drop operations that don’t
contribute to them (via dead code elimination).

* Can be used to split the trace into parts.
* Each part can be reconstructed separately (e.g. on a different machine).

* See master-wise and sector-wise reduction in other solvers.

* Expand the result into a series in any variable.
* By evaluating the trace while treating each value as a series, and saving
the trace of that evaluation.

* Done before the reconstruction, so one less variable to reconstruct in, but
potentially more expressions (depending on the truncation order).

* In practice only few leading orders in 𝜀 are needed, so expand in 𝜀 up to
e.g. 𝒪 𝜀0, and don’t waste time on reconstructing the higher orders.



21

Truncated series expansion

For 𝐼𝑎,𝑏,𝑐(𝑠, 𝑑) ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
before expansion:

* Variables to reconstruct in: 𝑠 and 𝑑.
* Trace outputs: “CO[I[1,1,1],I[0,1,1]]”, etc:

𝐼1,1,1 = CO[I[1,1,1],I[0,1,1]] 𝐼0,1,1.

After expansion in 𝜀 to 𝒪 𝜀0:
* Variables to reconstruct in: only 𝑠.
* Trace outputs: “ORDER[CO[I[1,1,1],I[0,1,1],eps^-1]”, etc:

𝐼1,1,1 = ORDER[CO[I[1,1,1],I[0,1,1],eps^-1] 𝜀−1 𝐼0,1,1
+ ORDER[CO[I[1,1,1],I[0,1,1],eps^0] 𝜀0 𝐼0,1,1.

* Might be slower to evaluate, but fewer evaluations are needed.
⇒ The more complicated the problem, the higher the speedup.
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RATRACER + series expansion benchmarks

probe time speedup total time speedup
𝒪 (𝜀0) 𝒪 (𝜀1) 𝒪 (𝜀2) 𝒪 (𝜀0) 𝒪 (𝜀1) 𝒪 (𝜀2)

𝑚1

𝑚1
𝑚2 1/1.3 1/1.5 1/1.8 3.2 2.4 1.9

𝑚1𝑚2 1/2.0 1/2.5 1/3.0 2.7 1.4 1/1.3

𝑠
𝑚1

𝑚2

1/1.4 1/2.4 1/2.9 2.3 1.7 1.4

𝑚 1/1.0 1/1.6 1/2.1 4.3 2.3 1.6

[github.com/magv/ibp-benchmark]
Resulting performance:

* A ~3x speedup with 𝜀 expansion up to 𝒪 𝜀0.
* The higher the expansion, the less the benefit.

https://github.com/magv/ibp-benchmark
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RATRACER for 𝑞�̄� → 𝑡 ̄𝑡𝐻

For the calculation of 2-loop 𝑞�̄� → 𝑡 ̄𝑡𝐻:
* Reduction is done for each phase-space point separately.

⇒ Mandelstam variables are set to rational numbers.

* Coefficients are expanded into a series in 𝜀.
⇒ No need to reconstruct in 𝜀.

⇒ RATRACER outputs rational numbers, no need for function reconstruction.
⇒ Trace sizes of 0.4–90MB per family, 500MB in total (compressed).
⇒ Reduction in under 2 CPU minutes per phase-space point.

* Down from ∼1 hour on 16 cores with KIRA 2.3+FIREFLY!
* Around 10x improvement from faster evaluation.
* Around 3x-4x improvement from expansion in 𝜀.
* Fast enough that we don’t need symbolic IBP solutions.
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Feynman integrals with pySECDEC
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Amplitude evaluation with pySECDEC

pySECDEC: library for numerically evaluating Feynman integrals via sector
decomposition and (Quasi-) Monte Carlo integration. [Heinrich et al ’23, ’21, ’18, ’17]

* github.com/gudrunhe/secdec

* Takes a specification for weighted sum of integrals (i.e. amplitudes),
decomposes integrals into sectors to isolate divergences, produces an
Quasi-Monte Carlo integration library.

* We use one sum per color structure.
* Integrals sampled adaptively to reach the requested precision of the sums.
* The 831 masters decompose into ∼18000 sectors (∼28000 integrals).

* In the latest release version 1.6: [Heinrich et al ’23]

* New “median QMC lattice” construction, with unlimited maximum size.
* New RQMC integrator “disteval” with 4x-5x speedup across the board.

* Integration time to get 0.3% precision for this calculation on a GPU:
* from 5 minutes in the bulk of the phase-space,
* to∞ near boundaries (e.g. high-energy region) due to growing
cancellations and spiky integrals (capped at 1 day).

https://arxiv.org/abs/2305.19768
https://arxiv.org/abs/2108.10807
https://arxiv.org/abs/1811.11720
https://arxiv.org/abs/1703.09692
https://github.com/gudrunhe/secdec
https://arxiv.org/abs/2305.19768
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Sector decomposition in short

𝐼 = 
1

0
d𝑥

1

0
d𝑦 𝑥 + 𝑦

−2+𝜀
= ?

Problem: the integrand diverges at 𝑥, 𝑦 → 0, can’t integrate numerically.
Solution: [Heinrich ’08; Binoth, Heinrich ’00]

1. Factorize the divergence in 𝑥 and 𝑦 with sector decomposition:

* 𝐼 = ∫⋯ × 𝜃 𝑥 > 𝑦
Sector 1

+𝜃 𝑦 > 𝑥
Sector 2

 = ∫
1

0
d𝑥∫

𝑥

0
d𝑦 𝑥 + 𝑦

−2+𝜀
+
⎛
⎜⎜⎜⎜⎝
𝑥
↕
𝑦

⎞
⎟⎟⎟⎟⎠

2. Rescale the integration region in each sector back to a hypercube:

* 𝐼 𝑦→𝑥𝑦= ∫1
0

d𝑥 𝑥−1+𝜀
Factorized pole

∫1
0

d𝑦 1 + 𝑦
−2+𝜀

+
⎛
⎜⎜⎜⎜⎝
𝑥
↕
𝑦

⎞
⎟⎟⎟⎟⎠

3. Extract the pole at 𝑥 → 0 analytically, expand in 𝜀:

* 𝐼 = − 2𝜀 ∫
1

0
d𝑦 1 + 𝑦

−2+𝜀
= − 2𝜀 ∫

1

0
d𝑦 

1

1+𝑦
2 −

ln1+𝑦

1+𝑦
2 𝜀 + 𝒪 𝜀2

4. Integrate each term in 𝜀 numerically (they all converge now).
In practice: geometric sector decomposition. [Bogner, Weinzierl ’07; Kaneko, Ueda, ’09]

https://arxiv.org/abs/0803.4177
https://arxiv.org/abs/hep-ph/0004013
https://arxiv.org/abs/0709.4092
https://arxiv.org/abs/0908.2897
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Randomized Quasi Monte Carlo integration
Randomized Quasi Monte-Carlo integration:

1. Let �⃗�(𝑘)1…𝑁 be 𝐾 low-discrepancy sequences in [0; 1)𝑛.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

2. Estimate ∫ 𝐼�⃗� d𝑛�⃗� ≈ mean𝑘mean𝑖 𝐼�⃗�
(𝑘)
𝑖 .

3. Estimation error ≈ stdev𝑘mean𝑖 𝐼�⃗�
(𝑘)
𝑖  /√𝐾 − 1.

Low-discrepancy sequences: [Dick, Kuo, Sloan ’13]

* Digital sequences (Sobol’, Faure, etc), with error ∼𝑁−1.

* Scrambled nets, with error ∼𝑁−1.5 if 𝜕𝑥𝐼 is square-integrable.

* Lattice rules, with error ∼𝑁−𝛼, if 𝜕(𝛼)𝑥 𝐼 is square-integrable and periodic.
* To enforce periodicity, use a variable transformation (𝑥 → 𝑦):

* baker’s: 𝑦 = 1 − |2𝑥 − 1|;
* Korobov𝑙,𝑟: d𝑦/d𝑥∼𝑥𝑙 (1 − 𝑥)𝑟; etc.

In pySECDEC: rank-1 lattice rules: �⃗�(𝑘)𝑖 =  𝑖⋅⃗𝑔𝑁𝑁 + random𝑘 mod 1.

* Generating vectors �⃗�𝑁 constructed online via “median QMC lattice”
construction. [Heinrich et al ’23; Goda, L’Ecuyer ’22]

https://web.maths.unsw.edu.au/~z2265001/preprints/DKS2013_preprint.pdf
https://arxiv.org/abs/2305.19768
https://arxiv.org/abs/2201.09413
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Monte Carlo vs RQMC

𝑚𝑊
𝑚𝑍Integration time scaling for Monte Carlo (VEGAS)

vs Randomized Quasi Monte Carlo (QMC).2
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Vegas
RQMC+baker's
RQMC+Korobov1, 1

2pySECDEC v1.5.3 on NVidia A100 GPU.
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Dealing with large cancellations
Large cancellations in parts of the high-energy region, e.g.:

𝒞 = 1029 + 1029
6d

+ 1024
6d

+ 1024
6d

+ 1024
6d

+ 1019 + 1019 + 1018

+⋯ ≈ 10−3

* Knowing the integrals at full double precision (16 digits) is not enough!

* The cancelling integrals converge well with QMC.
* The precision is limited by the use of double floats more than convergence.

⇒ Make pySECDEC use double-double (32 digits) for integrals that need it:
* 20+ digits of precision for 4-propagator integrals reachable;
* custom implementation for CPUs and GPUs;
* around 20x performance hit compared to doubles.
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Results for 𝑞�̄� → 𝑡 ̄𝑡𝐻
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Phase-space parameters
We parameterize the 𝑞�̄� → 𝑡 ̄𝑡𝐻 phase space as chained decay, and instead of

𝑠 = 𝑝𝑞 + 𝑝�̄�
2
∈  (2𝑚𝑡 + 𝑚𝐻)

2 ; ∞ ,

𝑠𝑡 ̄𝑡 = 𝑝𝑡 + 𝑝 ̄𝑡 
2
∈  (2𝑚𝑡)

2 ; √𝑠 − 𝑚𝐻
2
− (2𝑚𝑡)

2  ,

introduce:

𝐻
𝜃𝐻

𝑞

�̄�

𝑡 ̄𝑡 𝑧

𝑥

𝑡

̄𝑡

𝜑𝑡𝜃𝑡

𝛽2 ≡ 1 − 𝑠𝑚𝑖𝑛𝑠 ∈ [0; 1],

frac𝑠𝑡 ̄𝑡 ≡
𝑠𝑡 ̄𝑡 − 𝑠𝑡 ̄𝑡,𝑚𝑖𝑛

𝑠𝑡 ̄𝑡,𝑚𝑎𝑥 − 𝑠𝑡 ̄𝑡,𝑚𝑖𝑛
∈ [0; 1],

𝜃𝐻 ∈ [0; 𝜋],
𝜃𝑡 ∈ [0; 𝜋],
𝜑𝑡 ∈ [0; 2𝜋].
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Which parts of the phase-space are relevant?
Event density at the LHC according to the tree-level amplitude:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
β 2
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To cover 90% of events: 𝛽2 ∈ [0.24, 0.88], that is√𝑠 ∈ [540 GeV, 1.4 TeV].
* * *

Example results as two-dimensional slices around the center point of:

𝛽2 = 0.8, frac𝑠𝑡 ̄𝑡 = 0.7,
cos𝜃𝐻 = 0.8, cos𝜃𝑡 = 0.9, cos𝜑𝑡 = 0.7,

𝑚2
𝐻 = 12/23𝑚2

𝑡 , 𝜇 = 𝑠/2.
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Resulting slices in 𝛽2 and frac𝑠𝑡 ̄𝑡, 𝜃𝐻, 𝜃𝑡, 𝜑𝑡
𝑁𝑓 part of the two-loop amplitude (our result):
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Resulting slices in 𝛽2 and frac𝑠𝑡 ̄𝑡
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Resulting slices in 𝛽2 and frac𝑠𝑡 ̄𝑡 by color factor
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How to use the results?
Goal: precompute points on a 5-dimensional grid, interpolate in between.

* How few points do we need to evaluate for 1% approximation error?
* Which interpolation method fits best?

* Splines, polynomials, rationals, sparse grids, radial basis functions,
low-rank decompositions, neural networks?

* At which points to sample?
* Random unweighted samples, RAMBO samples, regular grids, sparse grids,
lattices, Padua points, Fekete points, locally adaptive points?

Maximal approximation error of𝒜 by various methods (work in progress):
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Summary & Outlook

Done:

* IBP performance improvements with RATRACER.

* Peformace and precision improvements in pySECDEC.

* 𝑁𝑓-part of the two-loop virtual amplitude for 𝑞�̄� → 𝑡 ̄𝑡𝐻.
In progress:

* The rest of the two-loop virtual amplitude for 𝑞�̄� → 𝑡 ̄𝑡𝐻.
* Interpolation for the results.

Future plans:

* Two-loop virtual amplitude for 𝑔𝑔 → 𝑡 ̄𝑡𝐻.
* Combination with real radiation.

* Phenomenological applications.
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Backup slides
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Amplitude library
Most of this work is glued by ALIBRARY (“Amplitude Library”). It provides
functions and interfaces to tools for multiloop calculations in Mathematica:

* Diagram generation and visualization (QGRAF, GRAPHVIZ, TIKZ).
* Feynman rule insertion.
* Tensor trace summation (FORM, COLOR.H).
* Integral symmetries, IBP families (FEYNSON).
* Export to/from IBP solvers (KIRA, FIRE+LITERED).
* Export to/from pySECDEC.

github.com/magv/alibrary

http://github.com/magv/alibrary
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RATRACER trace optimizations

Given a trace, RATRACER can optimize it using:

* Constant propagation:


t11 = int 2

t12 = int 3

t13 = mul t11 t12
⇒ 

t11 = int 2

t12 = int 3

t13 = int 6

* Trivial operation simplification:
t11 = int -1

t12 = mul t11 t7
⇒ t11 = int -1

t12 = neg t7

* Common subexpression elimination:
t11 = add t5 t7

t12 = add t5 t7
⇒ t11 = add t5 t7

t12 = t11

* Dead code elimination:
t11 = add t5 t7

[..., t11 is unused]
⇒ nop[...]

* Especially useful if a user wants to select a subset of the outputs.

* “Finalization”:


t11 = add t5 t6

t12 = add t11 t7

[..., t11 is unused]
⇒ 

t11 = add t5 t6

t11 = add t11 t7

[...]

* Needed to minimize the temporary memory needed for the evaluation.
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RATRACER usage for IBP reduction
1. Use KIRA to generate the IBP equations.

$ cat >config/integralfamilies.yaml <<EOF

integralfamilies:

- name: "I"

loop_momenta: [l]

top_level_sectors: [b111]

propagators:

- ["l", 0]

- ["l-p1", 0]

- ["l+p2", 0]

EOF

$ cat >config/kinematics.yaml <<EOF

kinematics:

outgoing_momenta: [p1, p2]

kinematic_invariants: [[s, 2]]

scalarproduct_rules:

- [[p1,p1], 0]

- [[p2,p2], 0]

- [[p1,p2], "s/2"]

# symbol_to_replace_by_one: s

EOF

$ cat >export-equations.yaml <<EOF

jobs:

- reduce_sectors:

reduce:

- {sectors: [b111], r: 4, s: 1}

select_integrals:

select_mandatory_recursively:

- {sectors: [b111], r: 4, s: 1}

run_symmetries: true

run_initiate: input

EOF

$ kira export-equations.yaml

2. Use RATRACER to create a trace with the solution.
$ ratracer \

load-equations input_kira/I/SYSTEM_I_0000000007.kira.gz \

load-equations input_kira/I/SYSTEM_I_0000000006.kira.gz \

solve-equations choose-equation-outputs --maxr=4 --maxs=1 \

optimize finalize save-trace I.trace.gz

3. Optionally expand the outputs into a series in 𝜀.
$ ratracer \

set d '4-2*eps' load-trace I.trace.gz \

to-series eps 0 \

optimize finalize save-trace I.eps0.trace.gz

4. Use RATRACER (+FIREFLY) to reconstruct the solution.
$ ratracer \

load-trace I.eps0.trace.gz \

reconstruct --to=I.solution.txt --threads=8 --inmem
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RATRACER usage as a library
RATRACER is built to support custom user-defined traces.
Any rational algorithm can be turned into a trace (via the C++ API).

Usage: API:

#include <ratracer.h>

int main() {

Tracer tr = tracer_init();

Value x = tr.var(tr.input("x"));

Value y = tr.var(tr.input("y"));

Value x_sqr =

tr.pow(x, 2);

Value expr =

tr.add(x_sqr, tr.mulint(y, 3));

/* expr = x^2 + 3y */

tr.add_output(expr, "expr");

tr.save("example.trace.gz");

return 0;

}

struct Value { uint64_t id; uint64_t val; };

struct Tracer {

Value var(size_t idx);

Value of_int(int64_t x);

Value of_fmpz(const fmpz_t x);

bool is_zero(const Value &a);

bool is_minus1(const Value &a);

Value mul(const Value &a, const Value &b);

Value mulint(const Value &a, int64_t b);

Value add(const Value &a, const Value &b);

Value addint(const Value &a, int64_t b);

Value sub(const Value &a, const Value &b);

Value addmul(const Value &a,

const Value &b1,

const Value &b2);

Value inv(const Value &a);

Value neginv(const Value &a);

Value neg(const Value &a);

Value pow(const Value &base, long exp);

Value div(const Value &a, const Value &b);

void assert_int(const Value &a, int64_t n);

void add_output(const Value &src, const char *name);

size_t input(const char *name, size_t len);

size_t input(const char *name);

int save(const char *path);

void clear();

};

Tracer tracer_init();
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pySECDEC contour deformation

𝐼 ≡ d𝑛�⃗�
𝑈𝛼�⃗�

𝐹𝛽�⃗�, …  + 𝑖0

What to do if 𝐹�⃗� = 0 inside the integration region?
⇒ Deform �⃗� into the complex plane!

�⃗� → �⃗� + 𝑖 𝛿�⃗� ,

𝐹 → 𝐹 + 𝑖 𝛿 𝜕𝐹 − 𝛿2 𝜕2𝐹 − 𝑖 𝛿3 𝜕3𝐹 + … .
Choose 𝛿�⃗� to enforce the +𝑖0 prescription:

Im 𝐹 = 𝛿𝜕𝐹 − 𝛿3 𝜕3𝐹 + … 𝛿→0≈ 𝛿𝜕𝐹 > 0 ⇒ 𝛿�⃗� = 𝜆𝜕𝐹�⃗� .

* There is always 𝜆 small enough that 𝛿 𝜕𝐹 > 𝛿3 𝜕3𝐹, and Im 𝐹 > 0.
* The larger 𝜆 is, the further the pole is, the better the convergence is.
* In practice: choose 𝜆 heuristically, but decrease it if Im 𝐹�⃗�𝑖 < 0.

* Gradient-based 𝜆 optimization can be useful. [Winterhalder et al ’21]

https://arxiv.org/abs/2112.09145
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pySECDEC median QMC lattices in practice
Precision by lattice for a 2-loop massive box: 𝑚

𝑚′
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elliptic2L_physical, sector 8, median lattices, R=11
elliptic2L_physical, sector 8, CBC lattices

In short:

* median lattices are on average competitive with CBC lattices;

* at higher precisions the worst unlucky lattices are avoided;

* no limitation on the lattice size;

* but: need to be constructed on the fly, interleaved with integration.
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