
PERFORMANCE TOOLS DEVELOPMENTS

Roberto A. Vitillo
presented by Paolo Calafiura & Wim Lavrijsen

Lawrence Berkeley National Laboratory

Future computing in particle physics, 16 June 2011

1

LINUX PERFORMANCE EVENTS SUBSYSTEM

• The perf events subsystem was merged into the Linux kernel in version
2.6.31 and introduced the sys_perf_event_open system call

• Uses special purpose registers on the CPU to count the number of
“events”

• An HW event can be, for example, the number of cache miss suffered or
mispredicted branches

• SW events, like page misses, are also supported

• Performance counters are accessed via file descriptors using the above
mentioned system call

2

LINUX PERFORMANCE EVENTS SUBSYSTEM (2)

• perf is an user space utility that is part of the kernel repository

• Available in Scientific Linux 6

• Basic usage: data is collected by using the perf-record tool and
displayed with perf-report

3

THE PERF TOOL: EXAMPLE USAGE

4

WHY DO WE CARE?

• The Linux Performance Events Subsystem provides a low
overhead way to measure the workloads of a single
application or the full system

• It’s at least an order of magnitude faster than an instrumenting
profiler

• It provides far more information compared to statistical
profiler

5

WHAT IS MISSING

• Annotating the objdump output one event at a time is not
enough for efficiently finding bottlenecks

• A real GUI that can display multiple events and their relations
is missing

•New CPU’s have a buffer that records the last taken branches
but a support to exploit it is missing

6

PERF EVENTS CONVERTER

• As a first step a converter tool for the perf-tools data format
has been introduced

• The tool is capable to convert a perf data file to a callgrind
one that can be displayed with kcachegrind:

•multiple events are supported

• annotated source code, assembly and function list view

• complete inline chain

7

PERF EVENTS CONVERTER (2)

8

PERF EVENTS VISUALIZER

• KCachegrind doesn’t permit to show an arbitrary number of events at the same time

• A new converter and a web-based GUI is under development

• The converter reads the a raw perf data file and produces spreadsheets, cycle accounting
trees and call graphs

• The GUI will be able to:

• present the available data in spreadsheets, cycle accounting trees and callgraphs

• offer insights on the callgraph, e.g. mark as hot virtual methods with high call
counts

• correlate different HW/SW events to gain a deeper understanding of
the performance bottlenecks

9

LAST BRANCH RECORD SUPPORT

• New Intel processors have a cyclic buffer that can record taken branches

• Each recorded branch is composed of a pair of registers for source and
destination

• Last Branch Records (LBR) sampling can be used to, e.g.

• evaluate the frequency of function calls and perform inline decisions

• yield the partial path of an event

• building a partial callgraph

10

IMPORTANCE OF LBR

• Atlas Software Issues:

• low instruction retired / call retired ratio

• high call retired / branch retired ratio

• Inlining functions called millions of times per event can indeed bring
considerable benefits

• David Levinthal’s proposal:

‣ “Use LBR and static analysis to evaluate frequency and cost of
function calls”

‣ “Use social network analysis / network theory to identify
clusters of active, costly function call activity”

‣ “Order cluster by total cost and inline”

11

LBR DEVELOPMENTS

• Kernel patch for filtering and dumping of the LBR is
completed; After validation the patch will be integrated in the
kernel trunk

• The perf report user space utility has a new feature to display
statistics about the taken branches

12

EXPLOITING THE LBR IN PERF
• Statistics about

DSO to DSO and
Symbol to Symbol
supported

• Optionally
distinguish between
predicted and
mispredicted
branches

• Filtering support

13

TODO

• Use a recursive disassembler instead of
a linear one?

• Disassemble a module/function on the
fly?

• Improve basic block counts by:

• using LBR to generate software
instruction retired event

• adhering to flow conservation rules
while limiting the amount of changes
to sample counts to a minimum

B1 B2

B3

In general with sampling
#B1 + #B2 != #B3

3 4

1

14

CONCLUSIONS

• The callgrind converter and the new GUI under development
will offer an easy way to non experts to navigate and
understand the profiled application

• The LBR support adds important profiling possibilities, vital for
OO SW, to the Linux Performance Events Subsystem

15

