
Alistair Hart
Cray Exascale Research Initiative Europe

Programming hybrid architecture
with OpenMP accelerator directives

Future computing for particle physics

e-Science Institute (Edinburgh)

17.Jun.11

ahart@cray.com

mailto:ahart@cray.com

 Cray has now announced the new Cray XK6

 Next generation Nvidia Fermi X2090 GPU
 20% better performance than 2070

 compute: 448 512 cores; 1.15 1.30 GHz clock

 memory: 6GB; 150 178GB/s bandwidth

 Next generation AMD Interlagos CPU

 Cray Gemini interconnect
 high bandwidth/low latency scalability

 Fully blendable with Cray XE6 product line

 Fully upgradeable from Cray XT/XE systems

 Longer term, GPUs are template a

for Exascale HPC architectures

2

 Launched December 2009

 Initial research partners are EPCC, CSCS and HLRS

 Cray increased EMEA team in Edinburgh, Lugano and Stuttgart

 Exploring how real applications can exploit future Exascale
architectures, specifically:

 Programming models for PGAS languages

 Programming GPU accelerators

 Improved algorithms for FFTs

 Network and I/O profiling

 Strong interactions with Cray R&D

 2011: Cray in negotiation with the EU for

"Exascale computing, software and simulation"

network
3

4

 Sustained performance milestones every 10 years...

 1000x the performance with 100x the PEs

 Can't scale power the same (US DOE: "6 20MW only")

 So we need lower-power, higher-performing PEs, e.g. GPUs

(and they're all Crays)

 Cray XK6 includes the first-generation Cray Unified X86/GPU PE

 Why is Cray putting so much effort into this?

 It is hard to get good performance from hybrid systems

 A good PE narrows the gap between observed and peak
achievable performance

 It will support three classes of users:

1. "hardcore" GPU programmers with existing CUDA ports

2. users with parallel codes and OpenMP experience, but less
GPU knowledge

3. users with serial codes looking for portable parallel
performance with and without GPUs

5

 Compilers: Cray Compilation Environment (CCE)
 Standards-compliant: Fortran (incl. CAF), C (incl. UPC), C++

 Accelerator usage: automatic and via OpenMP accelerator directives

 30 years' vectorising experience in CCE is great for generating GPU code

 Libraries: e.g. Cray libsci (BLAS, FFT)
 Cray's Autotuning Framework especially important for tuning GPUs

 e.g. DGEMM 30% faster than cuBLAS

 Performance Analysis: Cray Optimisation Explorer, CrayPAT
 Scoping tool to help users port and optimise applications

 Loop statistics information in CrayPAT (important for tuning OpenMP)

 Whole application profiling: coherent view of: CPU, GPU, comms, I/O

 Compilers: NVIDIA CUDA, PGI Accelerator

 Debuggers: Allinea DDT, Totalview

 Libraries: cuBLAS, cuFFT, MAGMA, PETSc, Trilinos etc.

 Performance tools: NVIDIA Compute and Visual profilers
6

C
ra

y
 s

u
p
p
lie

d

(C
ra

y
 s

p
e
c
if
ic

)

C
ra

y
 s

u
p
p
o
rt

e
d

(t
h

ir
d
 p

a
rt

y
)

 Why a new model? There are already many ways to program:

 CUDA, PGI CUDA Fortran, OpenCL...

 All are quite low-level and closely coupled to the GPU

 User needs to write specialist kernels:

 Hard to write and debug

 Hard to optimise for specific GPU

 Hard to update (porting/functionality)

 Directives provide high-level approach

+ Based on original source code
+ Easier to maintain/port/extend code (especially if original developer has moved on)

+ Users with OpenMP experience find it a familiar programming model

+ You run the same code on multicore CPU

– Possible performance sacrifice
 A small performance gap is acceptable (do you still hand-code in assembler?)

+ Goal is within 10% of CUDA (already seeing this in many cases, more tuning ongoing)

7

 An open standard is the most attractive for developers

 portability; multiple compilers for debugging; permanence

 An established standards committee is better than a new body

 Subcommittee of OpenMP ARB, aiming for OpenMP 4.0

 includes most major vendors
 PGI, CAPS, Intel, IBM... + other interested parties (e.g. EPCC)

 co-chaired by Cray (James Beyer)

 Cray is an enthusiastic supporter

 CCE is first full implementation

 Fortran, C, C++

 Will track standard as it evolves

 Compiles straight to PTX

 Preserves GPU debugging symbols (DDT...)

 Expect other vendors to follow lead
8

Execute a loop nest on the GPU

 Compiler does the work:

 Data movement

 allocates/frees GPU memory at start/end of region

 moves of data to/from GPU

 Loop schedule: spreading loop iterations over PEs of GPU

 division of iterations between SIMT/MIMD units of GPU

 Cache usage

 Explicit use of GPU shared memory for reused data
 automatic caching (e.g. NVIDIA Fermi) important

 Tune default behaviour with optional clauses on directives

9

!$omp acc_region_loop
DO j = 1,M
DO i = 2,N
c(i,j) = a(i,j) + b(i,j)

ENDDO
ENDDO
!$omp end acc_region_loop

read-only

write-only

 Data clauses:

 acc_copy, acc_copyin, acc_copyout, acc_shared
 e.g. copy moves data "in" to GPU at start of region and "out" to CPU at end

 supply list of arrays or array sections (using Fortran ":" notation)

 present: share GPU-resident data between kernels

 Tuning clauses:

 num_pes, cache, collapse...
 optimise GPU occupancy, register and shared memory usage, loop scheduling...

 Some other important clauses:

 async: Launch accelerator region asynchronously
 allows overlap of GPU computation/PCI transfers with CPU computation/network

 acc_call: Call external libraries or CUDA kernels
 optionally using data already resident on the GPU

 hetero: split loop iterations between CPU and GPU

10

 data region spans two accelerator regions

 The acc_region checks at runtime if b is already on GPU:
 yes: it uses this without copies; no: it follows the acc_copy(b) clause

 Can also call double_me() from outside a data region

 Do not need to inline the subroutine (manually or by compiler)

 Can even be in different source file
11

SUBROUTINE double_me(b)
REAL :: b(N)

!$omp acc_region_loop present(b) &
!$omp& acc_copy(b)
DO i = 1,N
b(i) = 2*b(i)

ENDDO
!$omp end acc_region_loop

END SUBROUTINE double_me

PROGRAM main
REAL :: a(N)

!$omp acc_data acc_shared(a)
!$omp acc_region_loop
DO i = 1,N
a(i) = i

ENDDO
!$omp end acc_region_loop
CALL double_me(a)

!$omp end acc_data
END PROGRAM main

 NAS Parallel Benchmarks and SPEC suite

 MG (multigrid) solves Laplacian on 3D grid

 Hotspots: resid (50% of runtime); psinv (25%); rprj3 (9%)
 Data arrays passed to/from subroutines at every iteration

 Whole application ported (25 directive pairs for 1500 lines)
 present clause essential to eliminate data movement costs

 GPU 50% faster than 12-core AMD Magny-Cours CPU
 Even before compiler starts to use GPU shared memory

 CG (conjugate gradient)

 whole application ported (19 directive pairs for 1200 lines)
 less than 1 hour's work (from first sight of code)

 GPU 15% faster than 12-core AMD Magny-Cours CPU
 more tuning is possible

12

13

 3d simulation of HCCI combustion

 detailed chemical kinetics (60 species)

 very important for low emission engines
burning second-generation biofuels

 Real problems have comms (e.g. halo swaps) with PCIe transfers

 Do comms kill the node-for-node performance comparison? No!

 OMP ACC directives work with MPI, CAF, SHMEM (& OpenMP!)

14
 Again, this code will benefit from ongoing GPU stencil tuning

 A good hybrid OpenMP code can (should) outperform a pure
MPI code on modern multi-/many-core CPUs

 (once MPI scaling is exhausted)

 Given a good OpenMP code, a compiler can (should) generate
efficient GPU code

 "Good" is measured as:

 OpenMP loops moved as far up the call-chain as possible

 Low-level loops vectorisable

 We have a four task strategy to achieve this:

1. Identification of potential accelerator kernels

2. Parallel Analysis, Scoping and Vectorisation

3. Correctness Debugging

4. Fine tuning of the accelerated program

 Users need tools to help with this
15

http://www.hybridmulticore.com/

16

800 cores

8000 cores

80000 cores
RH bar: pure MPI

LH bar: hybrid MPI/OpenMP

 Objective: Enhance productivity related to porting applications
to hybrid multi-core systems

 Provide all the information needed for the porting strategy
already described here

 Five core components

 Cray Statistics Gathering Facility on host and GPU

 Cray Optimization Explorer – Scoping Tools (COE)

 Cray Compilation Environment (CCE)

 Cray GPU runtime library

 Cray GPU Libraries

21

 Cray XK6 integrates GPU accelerators

 Programming accelerators efficiently is hard
 whether measured in wallclock or developer time

 a unified X86/GPU PE allows users to exploit Cray XK6
efficiently (performance and productivity)

 OpenMP accelerator directives are a key part of this

 Attractive, familiar programming model

 Open standard for vendor portability

 Use original Fortran, C, C++ source code

 Performance penalty is small

 An integrated porting strategy for hybrid multicore systems
benefits both CPU and GPU performance

 Users need new tools to achieve this

 Cray unifed PE supplies such tools
22

 John Levesque and Roberto Ansaloni (Cray)

 Cray R&D: Luiz DeRose, Suzanne LaCroix, David Oehmke, James
Beyer, Vince Graziano...

 EPCC Exascale team

 ORNL team

 OpenMP subcommittee

For further info, ahart@cray.com or see our paper this week at IWOMP11...

23

mailto:ahart@cray.com

24

