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Toolkit for Multivariate Analysis (TMVA) 

  The Toolkit for Multivariate Analysis (TMVA) provides a ROOT-integrated  
environment for the processing,  evaluation and application of multivariate 
classification (and regression) techniques. 

  The software package consists of abstract, object-oriented implementations 
in C++/ROOT for each of the MVA techniques, as well as auxiliary tools 
such as parameter fitting and transformations. 

  Their training and testing is performed with the use of user-supplied data 
sets in form of ROOT trees or text files. 

  The TMVA training job runs as a ROOT script, as a standalone executable, 
or as a python script via the PyROOT interface.  

(from the TMVA users guide) 



TMVA Methods 

  A whole host of multivariate techniques are available:  

Rectangular cut optimisation Projective likelihood estimator 
(PDE) 

Multi-dimensional likelihood 
estimator (PDE range search) 

Likelihood estimator using self-
adapting phase-space binning (PDE 
Foam)  

k-Nearest Neighbour Classifier H-Matrix discriminant 

Linear Discriminant Analysis Artificial Neural Networks 

Support Vector Machines Boosted Decision Trees 

Parallelisation effort elsewhere Non-linear approximations 



TMVA Application Flow 
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(from the TMVA users guide) 



TMVA Technique Performance 

  Investigate where MVA technique performance gaps are found:  

Fair 
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Good 

Bad 



TMVA and GPUs 
  Feasibility studies will be performed on GPUs using Nvidia CUDA (for now)  

C++ Support 
•  Dynamic memory allocation (new/delete)   
•  virtual function support 
GPU Device Memory Addressing 
•  No-copy pinning of system memory 
Multi-GPUs 
•  GPUDirect v2.0 support for Peer-to-Peer Communication 
•  Use all GPUs in the system concurrently from a single host thread 

Pros Cons 

Potential for large speed gains Challenge of (re-)developing applications 

Greater increases in performance when 
compared with CPUs 

Not well suited to all tasks 

Power consumption, price to performance Constantly evolving hardware and APIs 

CUDA 4.0 just released 



Previous GPU Multivariate effort 

  Simulated Annealing (Rectangular cut optimisation) 
  Parallelizing Simulated Annealing-Based Placement using GPGPUs 
  An average speedup of about 10x was achieved 

  Genetic Algorithms (Rectangular cut optimisation) 
  Parallel Genetic Algorithms on Programmable Graphics Hardware 
  Fitness functions must be evaluated entirely on GPU 
  Challenge of generating pseudo random numbers on GPU 

  Artificial Neural Networks 
  Artificial Neural Network Computation on Graphic Process Units 
  GPU based computation is about 200 times faster than CPU 

  Support Vector Machines 
  Fast Support Vector Machine Training and Classification on Graphics Processors 
  Training time is reduced by 5－32×, and classification time is reduced by 

120－150× 

  Significant speed up reported for several techniques, but can this be easily 
ported into the TMVA framework?  



Feasibility Study Approach 

  Optimise Individual TMVA techniques 
  Rectangular Cut Optimisation, Neural Network and Support 

Vector Machines are early candidates 

  Go for a general approach 
  Data structure analysis 
  “Accelerator” method 

  Consider algorithm patterns for parallelisation 
  e.g. Map-Reduce in SVM 

  Start with Bottleneck studies – look for hotspots.  
  Cross platform performance analysis 



Feasibility Study Approach 

  The training (and evaluation) phase is far more time consuming 
than the application phase.  

  Would like to introduce automatic parameter optimisation to the 
training procedure to avoid sub-optimal training. 

  Listen to the developers! 

  Run training cycles - in parallel - with differing parameters 
  Decide the best parameter choice with rudimentary fit. 

  Possible approach: 

Comments and suggestions welcome! 

“We stress however that, to solve a concrete problem, all methods require at least 
some specific tuning to deploy their maximum classification or regression capabilities” 


