
TMVA Method Optimisation
Feasibility Study

Hazel McKendrick and Andrew Washbrook
Future Computing Workshop, 16th June 2011, University of Edinburgh

Toolkit for Multivariate Analysis (TMVA)

  The Toolkit for Multivariate Analysis (TMVA) provides a ROOT-integrated
environment for the processing, evaluation and application of multivariate
classification (and regression) techniques.

  The software package consists of abstract, object-oriented implementations
in C++/ROOT for each of the MVA techniques, as well as auxiliary tools
such as parameter fitting and transformations.

  Their training and testing is performed with the use of user-supplied data
sets in form of ROOT trees or text files.

  The TMVA training job runs as a ROOT script, as a standalone executable,
or as a python script via the PyROOT interface.

(from the TMVA users guide)

TMVA Methods

  A whole host of multivariate techniques are available:

Rectangular cut optimisation Projective likelihood estimator
(PDE)

Multi-dimensional likelihood
estimator (PDE range search)

Likelihood estimator using self-
adapting phase-space binning (PDE
Foam)

k-Nearest Neighbour Classifier H-Matrix discriminant

Linear Discriminant Analysis Artificial Neural Networks

Support Vector Machines Boosted Decision Trees

Parallelisation effort elsewhere Non-linear approximations

TMVA Application Flow

1	

2	

3	

(from the TMVA users guide)

TMVA Technique Performance

  Investigate where MVA technique performance gaps are found:

Fair

1	

2	

Good

Bad

TMVA and GPUs
  Feasibility studies will be performed on GPUs using Nvidia CUDA (for now)

C++ Support
•  Dynamic memory allocation (new/delete)
•  virtual function support
GPU Device Memory Addressing
•  No-copy pinning of system memory
Multi-GPUs
•  GPUDirect v2.0 support for Peer-to-Peer Communication
•  Use all GPUs in the system concurrently from a single host thread

Pros Cons

Potential for large speed gains Challenge of (re-)developing applications

Greater increases in performance when
compared with CPUs

Not well suited to all tasks

Power consumption, price to performance Constantly evolving hardware and APIs

CUDA 4.0 just released

Previous GPU Multivariate effort

  Simulated Annealing (Rectangular cut optimisation)
  Parallelizing Simulated Annealing-Based Placement using GPGPUs
  An average speedup of about 10x was achieved

  Genetic Algorithms (Rectangular cut optimisation)
  Parallel Genetic Algorithms on Programmable Graphics Hardware
  Fitness functions must be evaluated entirely on GPU
  Challenge of generating pseudo random numbers on GPU

  Artificial Neural Networks
  Artificial Neural Network Computation on Graphic Process Units
  GPU based computation is about 200 times faster than CPU

  Support Vector Machines
  Fast Support Vector Machine Training and Classification on Graphics Processors
  Training time is reduced by 5－32×, and classification time is reduced by

120－150×

  Significant speed up reported for several techniques, but can this be easily
ported into the TMVA framework?

Feasibility Study Approach

  Optimise Individual TMVA techniques
  Rectangular Cut Optimisation, Neural Network and Support

Vector Machines are early candidates

  Go for a general approach
  Data structure analysis
  “Accelerator” method

  Consider algorithm patterns for parallelisation
  e.g. Map-Reduce in SVM

  Start with Bottleneck studies – look for hotspots.
  Cross platform performance analysis

Feasibility Study Approach

  The training (and evaluation) phase is far more time consuming
than the application phase.

  Would like to introduce automatic parameter optimisation to the
training procedure to avoid sub-optimal training.

  Listen to the developers!

  Run training cycles - in parallel - with differing parameters
  Decide the best parameter choice with rudimentary fit.

  Possible approach:

Comments and suggestions welcome!

“We stress however that, to solve a concrete problem, all methods require at least
some specific tuning to deploy their maximum classification or regression capabilities”

