

Giulia Tuci, on behalf of the LHCb collaboration

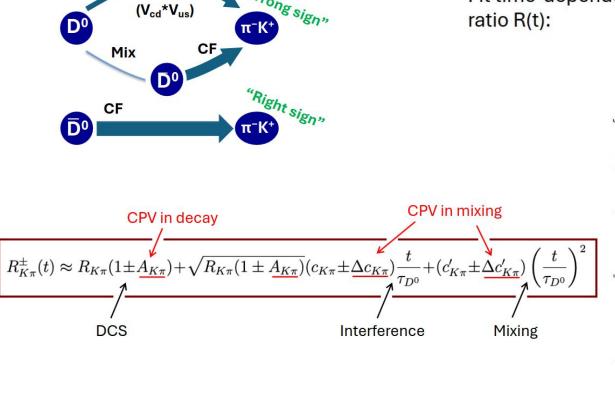
Heidelberg University

CERN, 29/05/2024

Overview

- Recent measurements on Run 1 and Run 2 datasets
- 2023 PbPb physics highlights
- Status of 2024 data-taking and current performance

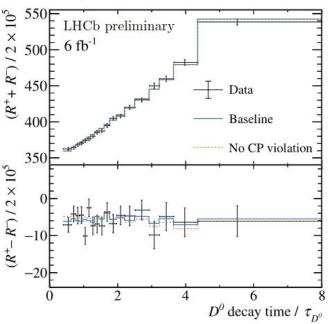
Results using Run 1 and Run 2 datasets

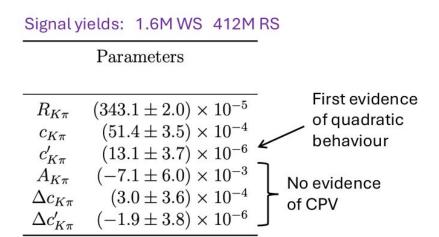

Since the last LHCC

Paper	Title	
Submitted since the February 2024 LHCC		
PAPER-2023-018	Search for Prompt Production of Pentaquarks in $\Sigma_c D$ and $\Lambda_c D$ Final states	
PAPER-2023-036	Amplitude analysis of the $\Lambda_b \to pK^-\gamma$ decay	
PAPER-2023-042	Observation of the $\Lambda_{\rm b}^0 \to {\rm D}^+{\rm D}^-\Lambda$ decay	
PAPER-2023-044	First observation of $\Lambda_{\rm b} \to \Sigma_{\rm c}^{(*)++} {\rm D}^{(*)0} {\rm K}^-$	
PAPER-2023-045	Search for $B_s \to \mu\mu\gamma$	
PAPER-2024-001	$B \to D^{*-}D_s^+\pi^+$ AmAn	
PAPER-2024-003	Search for time-dependent CP violation in $D \to \pi\pi\pi^0$	
PAPER-2024-006	Search for $B_s \to \phi \mu \tau$	
PAPER-2024-009	$\Lambda, \bar{\Lambda}$ polarisation in pNe	
PAPER-2024-011	Comprehensive analysis of local and nonlocal amplitudes in the $B^* \to K^* \mu^+ \mu^-$ decay	
DP-2023-004	Tracking of charged particles with nanosecond lifetimes at LHCb	
Preliminary results since the February 2024 LHCC		
CONF-2024-001	Observation of the decay $J/\psi \to \mu^+\mu^-\mu^+\mu^-$	
PAPER-2023-043	First measurement of $J/\psi\phi$ production in pp collisions with no additional activity	
PAPER-2024-002	Amplitude analysis of $B_s \to KK\gamma$	
PAPER-2024-004	Measurement of the cross-section of $h_c \to p\bar{p}$	
PAPER-2024-005	Search for $\Lambda_{\rm c} o { m p} \mu \mu$	
PAPER-2024-007	Combined measurement of $R(D^+)$ and $R(D^{+*})$ – muonic	
PAPER-2024-008	Mixing and CPV with $D^0 \to K\pi$ decays from Run 2 data	
PAPER-2024-010	Measurement of the $\Xi_{\rm b}$ lifetime	
PAPER-2024-013	Study of $\Omega_{\rm b}$ and $\Xi_{\rm b}$ to $\Lambda_{\rm c}$ hh	

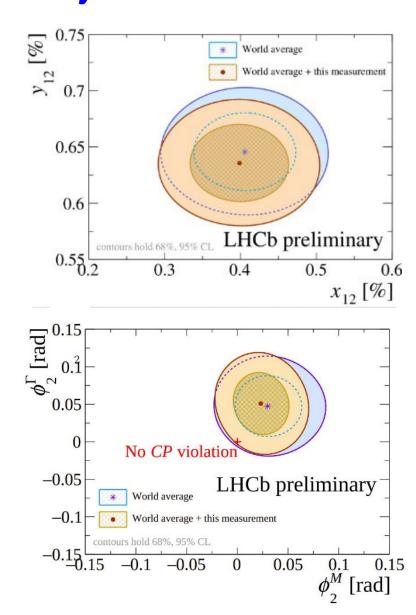
LHCb has submitted **733 papers to arXiv**, of which **704 are published**.

Mixing and CPV in $D^0 \rightarrow K^+\pi^-$ decays


- Full Run 2 dataset. Production flavour tagged via $D^{*+} \rightarrow D^0 \pi^+$ decays *
- Nuisance asymmetries determined via D⁰→ K⁺K⁻ control mode *

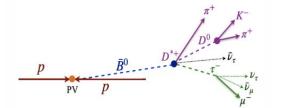

Fit time-dependent

$$R_{K\pi}^+(t) \equiv \frac{\Gamma(D^0(t) \to K^+\pi^-)}{\Gamma(\overline{D}^0(t) \to K^+\pi^-)}$$

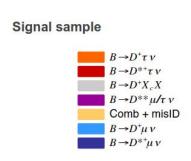

$$R_{K\pi}^-(t) \equiv \frac{\Gamma(\overline{D}^0(t) \to K^-\pi^+)}{\Gamma(D^0(t) \to K^-\pi^+)}$$

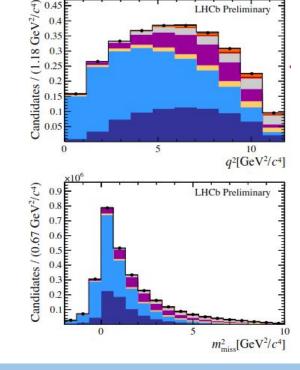
Mixing and CPV in $D^0 \rightarrow K^+\pi^-$ decays

60% improvement in precision, still statistically limited



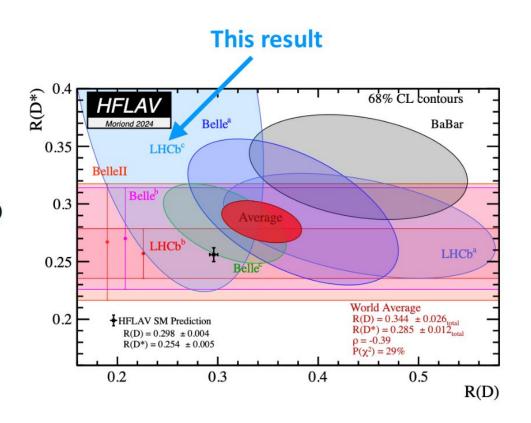
R(D⁺) and R(D^{*+}) using muonic τ decays


LHCb-PAPER-2024-007


EW couplings to leptons "universal" (the only difference is the mass) in the SM \rightarrow can be tested in b \rightarrow clv (Predicted with a ~1% precision in the SM)

$$R(D^{(*)}) = \frac{\mathscr{B}(B \to D^{(*)}\tau^{+}\nu_{\tau})}{\mathscr{B}(B \to D^{(*)}\mu^{+}\nu_{\mu})}$$

- Experimental challenge: neutrinos → no narrow peak to fit
- Strategy: make 3D template fits to q², missing mass and lepton energy distributions

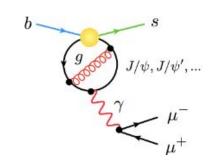


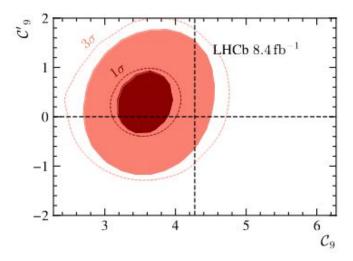
R(D⁺) and R(D⁺) using muonic T decays

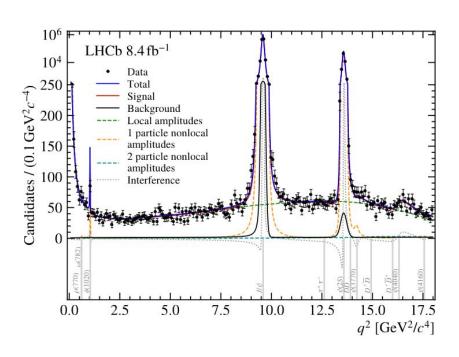
LHCb-PAPER-2024-007

$$R(D^+) = 0.249 \pm 0.043(stat) \pm 0.047(syst)$$

 $R(D^{*+}) = 0.402 \pm 0.081(stat) \pm 0.085(syst)$
 $\rho = -0.39$


→ Latest LHCb result compatible with SM, but world average still at more than 3σ from the SM


Unbinned analysis of $B \rightarrow K^* \mu^+ \mu^-$ decays

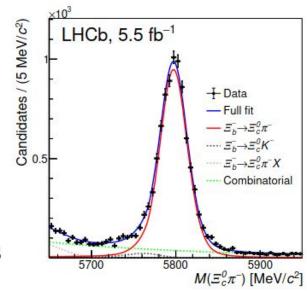

LHCb-PAPER-2024-011

- ❖ Discrepancies in angular observables of $B \rightarrow K^* \mu \mu$: NP in C_9 or unaccounted interference with $c\bar{c}$ states?
- \bullet unbinned angular analysis over the full q^2 range

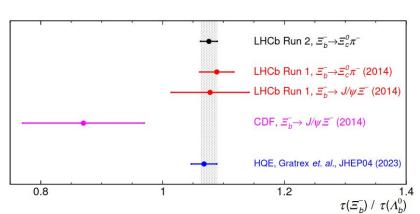
W	ilson Coefficient results
\mathcal{C}_9	$3.56 \pm 0.28 \pm 0.18$
\mathcal{C}_{10}	$-4.02 \pm 0.18 \pm 0.16$
\mathcal{C}_9^{\prime}	$0.28 \pm 0.41 \pm 0.12$
$\mathcal{C}_{10}^{'}$	$-0.09 \pm 0.21 \pm 0.06$
$\mathcal{C}_{9 au}$	$(-1.0 \pm 2.6 \pm 1.0) \times 10^{2}$

Measurement of the **\(\Sigma\)** lifetime

LHCb-PAPER-2024-010


◆ Precision measurement of beauty hadrons lifetimes → test of heavy quark

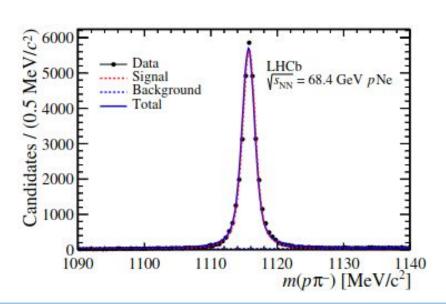
expansion framework


$$R(t) \equiv \frac{N[\Xi_b^- \to \Xi_c^0 \pi^-](t)}{N[\Lambda_b^0 \to \Lambda_c^+ \pi^-](t)} \cdot \frac{\varepsilon[\Lambda_b^0 \to \Lambda_c^+ \pi^-](t)}{\varepsilon[\Xi_b^- \to \Xi_c^0 \pi^-](t)} = R_0 \exp{(\lambda t)},$$

$$\lambda \equiv rac{1}{ au_{arLambda_b^0}} - rac{1}{ au_{arElember_b^-}}$$

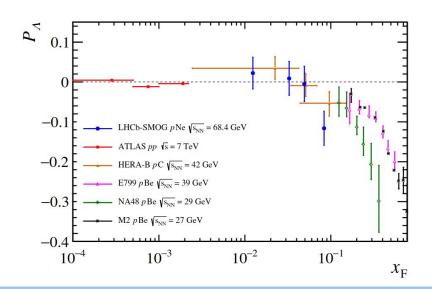
$$\tau(\Xi_b^-)^{\text{Run } 1,2} = 1.578 \pm 0.018 \pm 0.010 \pm 0.011 \text{ ps}$$

- Precision of current world average improved by a factor of 2!
- In agreement with latest theoretical predictions



Λ^0 transverse polarization studies in pNe collisions

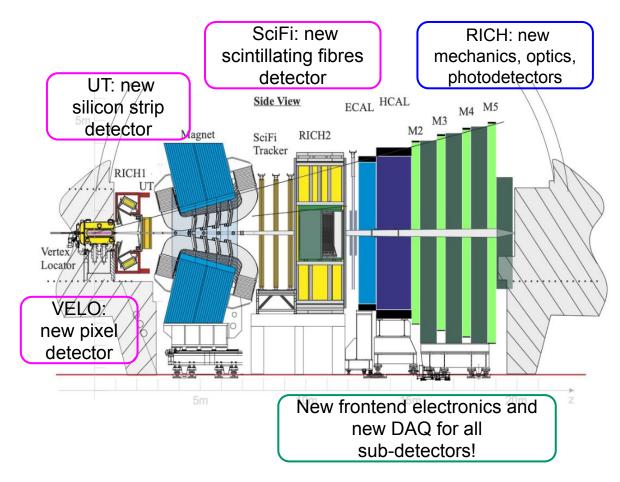
LHCb-PAPER-2024-009


- LHCb can inject gas into the beam pipe to act as a fixed target collision experiment
- ❖ Transverse polarization: observed in 1976 in pBe collisions using 300 GeV unpolarised beam \rightarrow not expected and cause not yet understood PRL 36 (1976) 1113
- Measure it in pNe collisions (2017 data) fitting the angular distribution of the proton

$$\frac{dN}{d\cos\theta} = \frac{dN_0}{d\cos\theta} (1 + \alpha P_A \cos\theta)$$

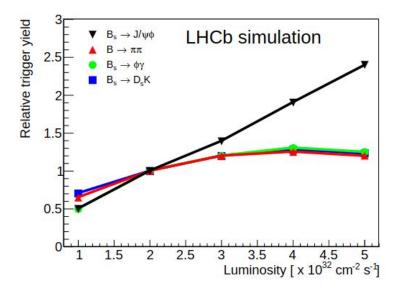
$$P_{\Lambda} = 0.029 \pm 0.019 \,(\text{stat}) \pm 0.012 \,(\text{syst})$$

$$P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\mathrm{stat}) \pm 0.014 \, (\mathrm{syst})$$


Run 3 data-taking

LHCb in Run 3

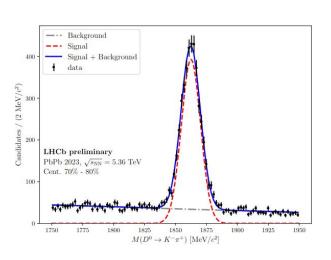
JINST 19P05065

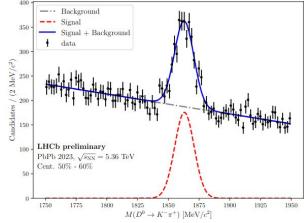

- The majority of our measurements is statistically limited
 - → **LHCb Upgrade I**: 5x instantaneous luminosity

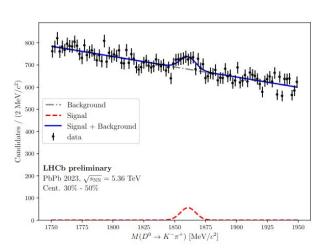
Improve physics
 performance, despite
 the more challenging
 environment

Trigger system

- Trigger strategy in Run 1 + Run 2:
 - ➤ Hardware trigger (L0), followed by a software trigger
- Higher instantaneous luminosity
 - ightharpoonup Tight p_{τ} and E_{τ} cuts saturate hadronic channels \rightarrow L0 trigger removed
 - Software trigger process events at the full LHC collision rate
 - → room for improving trigger efficiency w.r.t. Run 2

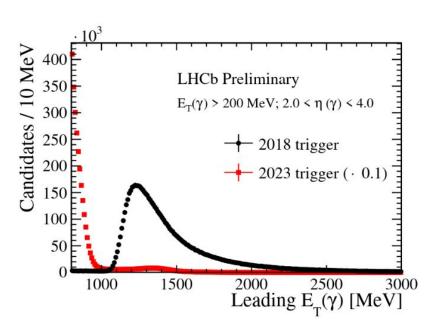


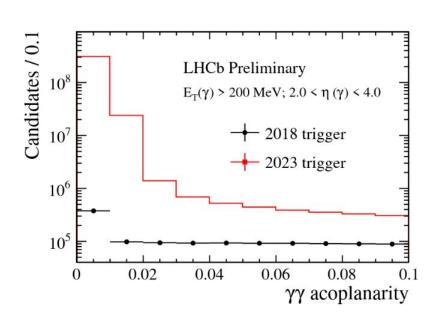

IINST 19P05065


2023 PbPb data

- Goal for Run 3: take advantage of new tracking system (more granular detector) and reach 30% of centrality (VELO was saturating at ~70% in Run 2)
- Despite the challenging 2023 conditions signal events up to mid-central collisions are found
 - VELO in an open position and UT, crucial to reduce ghost rate, not included in the data-taking at the time

LHCb-FIGURE-2024-004

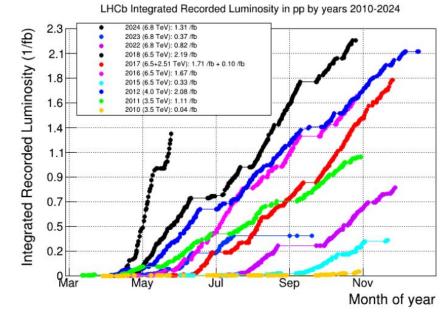



2023 PbPb data

- Ultraperipheral collisions: great laboratory for QCD studies
- How to identify them? Search for photon pair candidates, with strong angular correlation, in low multiplicity PbPb collisions

LHCb-FIGURE-2024-012

b>RA+RB



Big improvement in trigger efficiency thanks to L0 removal!

Status of 2024 data-taking

Progress with data-taking

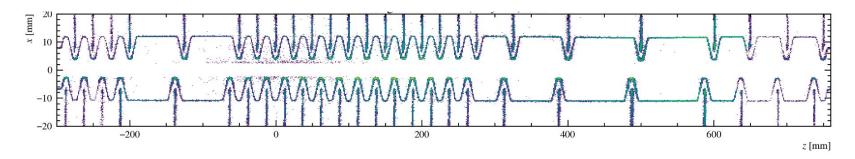
- 2024 is the first opportunity to run at nominal conditions: VELO fully closed and design instantaneous luminosity
- Intensity ramp-up phase optimally exploited to be ready in time for luminosity production

- Now operating stably with >90% data-taking efficiency at $\mathcal{L} = 1.2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
- Current running conditions driven by trigger and physics considerations
- Interleaved physics production and optimisation fills aiming to run at $\mathcal{L} = 2.0 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$ including the UT and by design trigger and alignment performance after TS1

VELO

- After RF-foil re-installation, recommissioning without beam
 - infrastructures (cooling, LV, HV), optical links (control and readout)
- Recommissioning with beam during intensity ramp-up
 - time alignment, tuning of FE configuration and DAQ firmware for high occupancy operation
- Closing procedure recommissioned, VELO operated at nominal gap
 - minimal aperture of 3.2mm

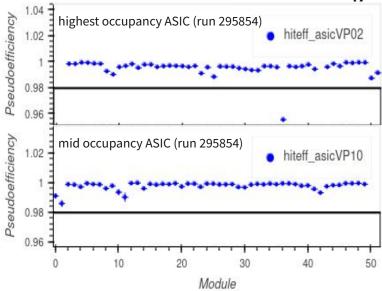
Some of the VELO people happy after closing the detector for the first time after last year's incident

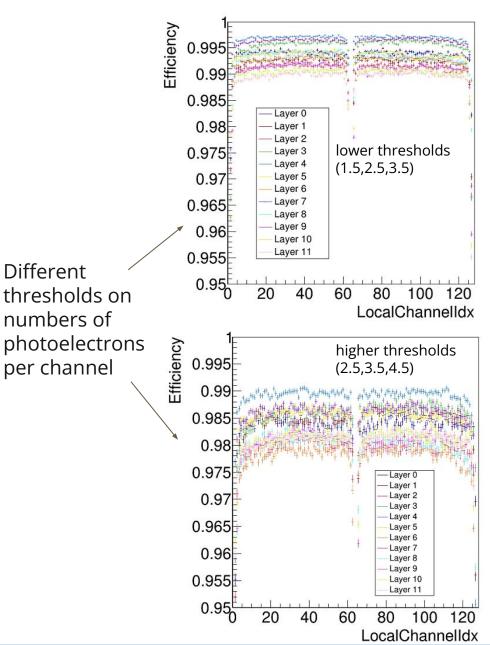


VELO

Performances

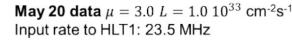
- > >99% optical links active
- > hit efficiencies higher than 98%
- operation at nominal conditions stable

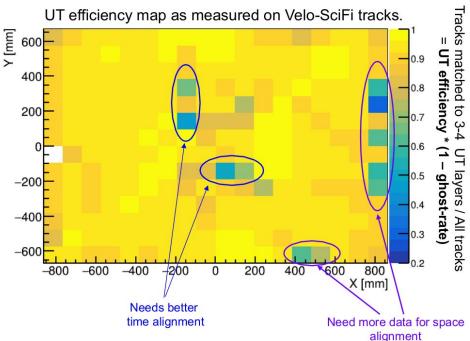

Selfie of the new RF-box and VELO modules with reconstructed hadronic interaction vertices


Hit efficiencies

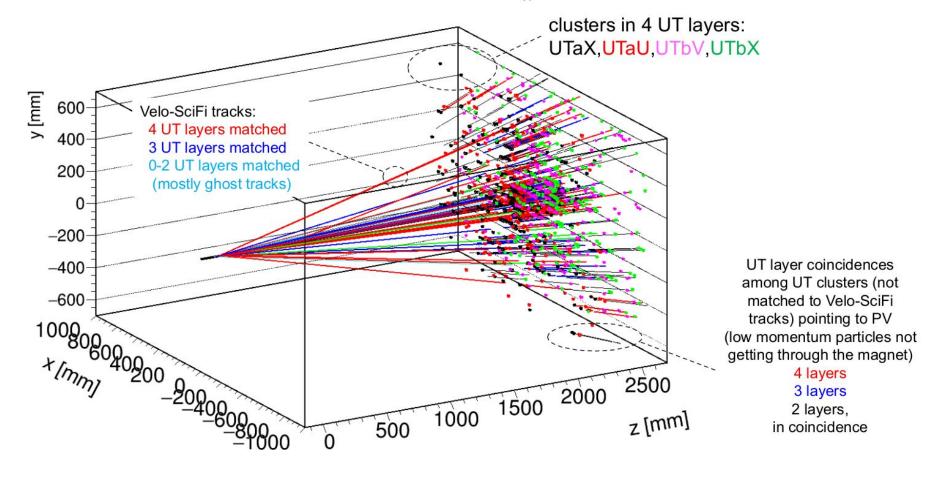
VELO

Biased hit efficiencies in online monitoring

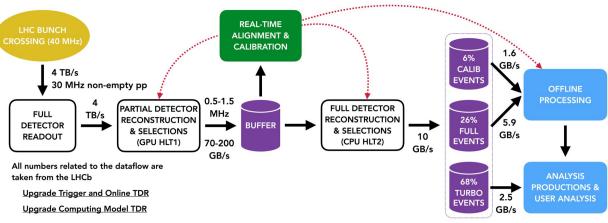



SciFi

- Quick progress in UT commissioning with beams this year!
 - Coarse time alignment based on 450GeV beam collisions in March
 - Fine time alignment and spatial alignment based on 6.5 TeV collisions (April 18)
 - Retuned setting of Front-End ASICs installed on May 17



- Efficiency on VELO-SciFi tracks is 96%
 - Further improvements from 2nd round of fine-time alignment, spatial alignment and customization of FF thresholds to individual channels


3 PVs, 50 Velo-SciFi tracks (high momentum charged particles getting through the magnet)

Run 295293 Event 9782243 nPv 3 zPv -3 mm nTr 50 nUT 1126 BXType 3 BXID 2782

LHCb data-flow

 HLT1 processing 26MHz of collision data on 330 GPUs

- Performing online monitoring / calibration / alignment on CPUs
- HLT2 process data through farm of 3500 CPU nodes
 - Output of HLT2: 10GB/s of physics data as planned in the TDR
- The data is split into 3 Physics streams
 - Turbo: Reduced information ready for analysis by user (2.5GB/s)
 - Full: Further selection performed offline (6 GB/s)
 - ➤ TurCal: Data to be analyzed for calibration purposes (1.5GB/s)
- Processed nearly 1 fb⁻¹ by the 23rd of May.

LHCb data-flow

- All of LHCb's 3 physics streams have been processed offline (the Sprucing processing stage)
- Ntuples have been provided to analysts mostly via the centralised Analysis
 Productions system
- Productions "bundled" for WG, minimising reading of the samples and easing operations

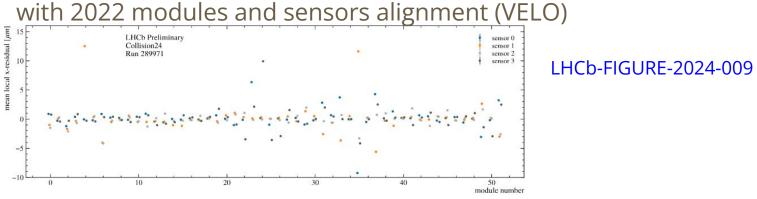
All **within 3 days** of data being run through HLT2 at the LHCb pit!

Trigger

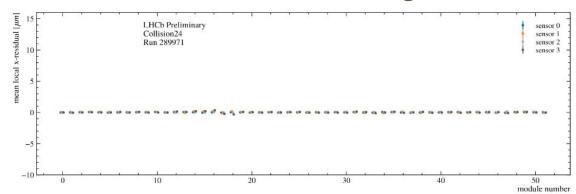
Offline processing

1.6
CALIB EVENTS
GB/s
FULL EVENTS
GB/s
FULL EVENTS
GB/s
TURBO EVENTS
GB/s

STREAM
N

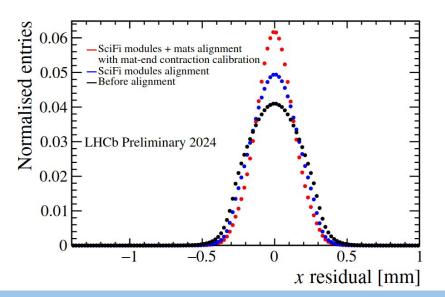

15 PB / year

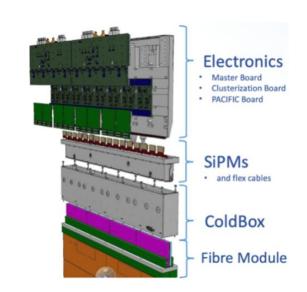
So far we have Spruced 3 PB of data - full data processing chain is in operation.


Currently ~100 Analysis Productions are "live" and pick up data automatically as it arrives out of the Sprucing

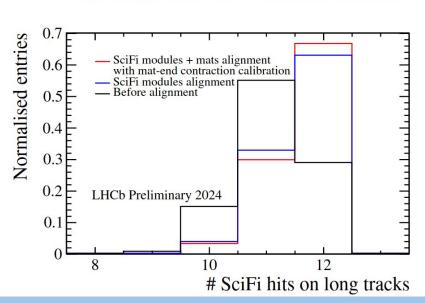
Alignment and calibration

- To achieve best performance: essential to spatially align and calibrate the detector!
 - Detectors have been moved during YETS (and VELO is closed and opened at every fill)
 - → evaluate again spatial alignment of detector elements

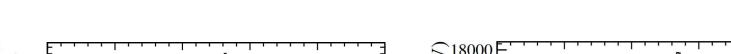

after new modules and sensors alignment (VELO)

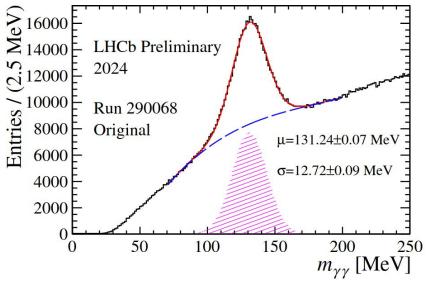


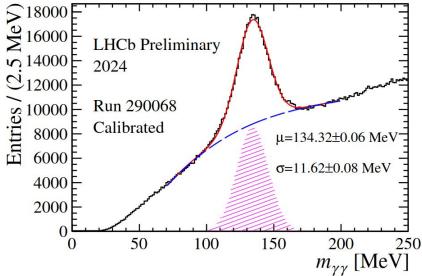
Alignment and calibration (2)


Still room for improving SciFi alignment, but large progress made in the first weeks of data-taking

LHCb-FIGURE-2024-009

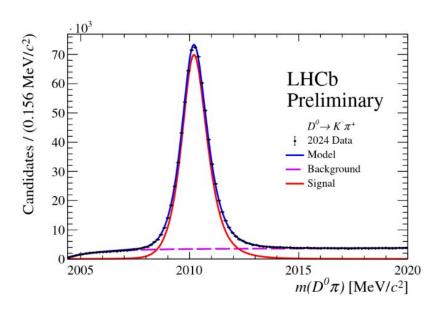


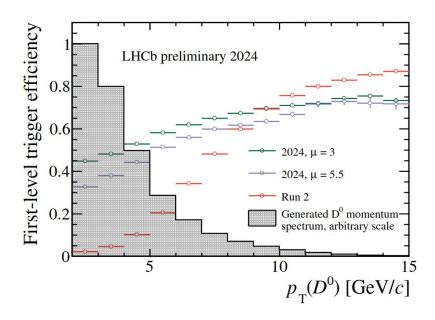




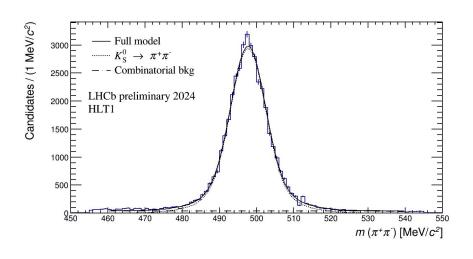
Alignment and calibration (3)

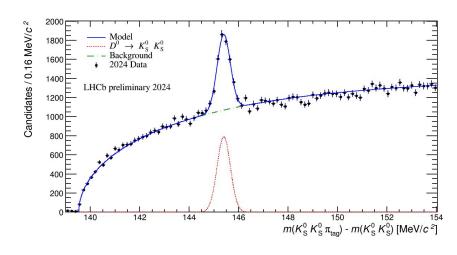
- Calibrate each of the 6016 cells of the electromagnetic calorimeter via an iterative process
 - Measure neutral pion invariant mass in all the cells and apply calibration to match PDG value

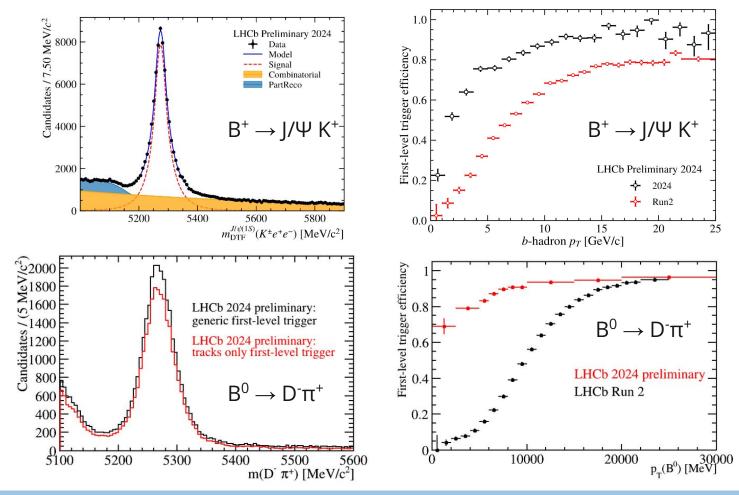




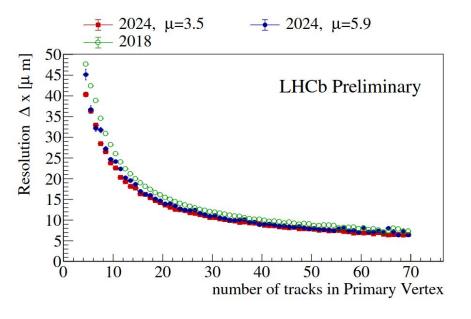
LHCb-FIGURE-2024-009

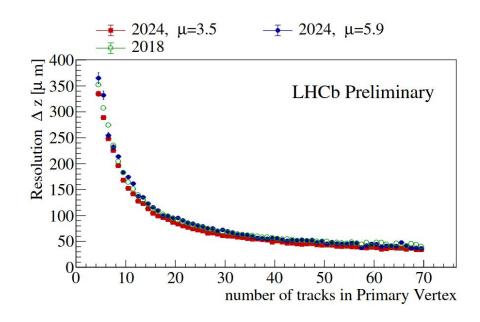

Charm decays in 2024 data


Removal of hardware trigger improves the efficiency in selecting hadronic charm decays!


- Software trigger → flexibility in design selections
 - \succ K_s^0 candidates reconstructed directly at the first level of the trigger!
 - ➤ Dedicated selections to collect single K_S^0 and pairs of $K_S^0 \rightarrow$ increase efficiency in selecting decays like $D^0 \rightarrow K_S^0 K_S^0$

B decays in 2024 data

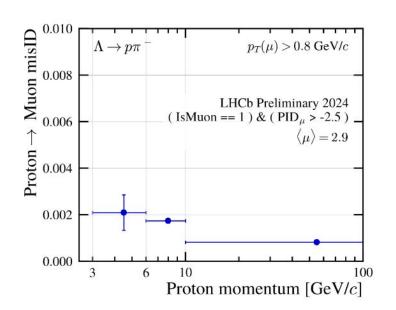

Trigger improvements confirmed also in hadronic B decays and when electrons are present in the final state!

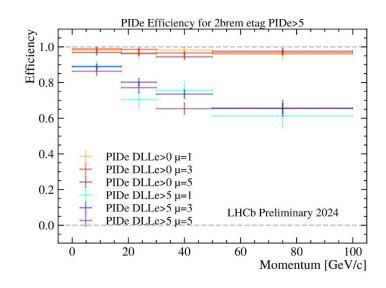


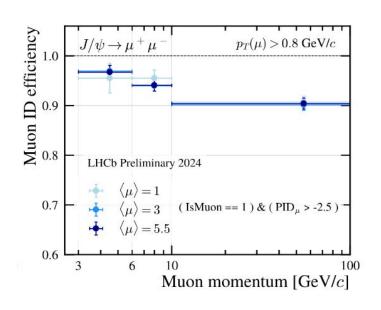
PV resolution

- Performance better than Run 2 and stable when varying the average number of visible pp interactions per bunch crossing (μ)
 - \rightarrow µ=5 \rightarrow ~ nominal luminosity

LHCb-FIGURE-2024-011

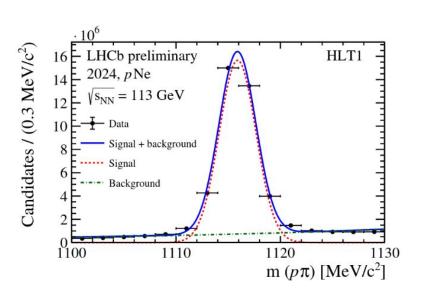


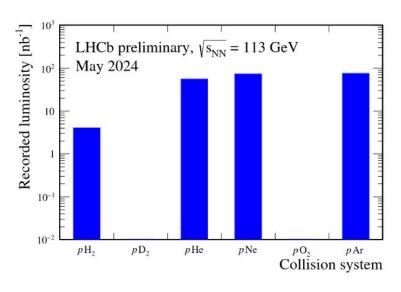


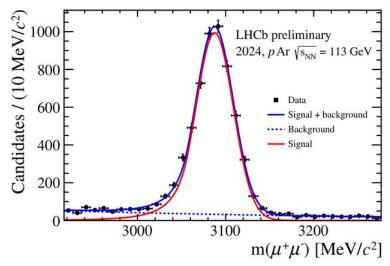

PID performance

- Particle identification by combining information from different subdetectors
 - Difference in log-likelihood between different hypothesis
- Good stability as a function of μ !

LHCb-FIGURE-2024-010





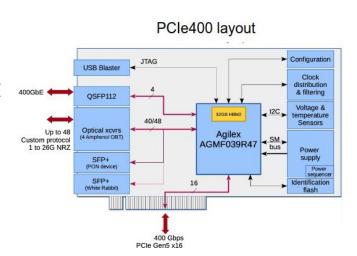


SMOG

Successfully collected samples in different fixed-target configurations!

Conclusions

- Publishing world leading measurements with Run 1 and Run 2 datasets!
- Currently analyzing 2023 PbPb data
 - Signal events up to mid-central collisions
 - Big improvement in trigger efficiency for UPC
- Exploring the full potential of Upgrade I in 2024
 - > Detectors stably operating at nominal conditions
 - Expected improvements of trigger efficiency for hadronic channels confirmed on data
 - > Still room for improving final performance, but huge progress made since the beginning of the data-taking


Conclusions (2)

- Not discussed today
 - Online enhancements TDR (for LS3) -- under LHCC review
 - Scoping document for Upgrade 2 (LS4) -- under preparation for submission at next LHCC week
- We warmly thank the LHC for their support and operations!

Backup slides

DAQ LS3 enhancement

- PCIe400: new readout board with 400 Gb/s
 - 48 GBT/lpGBT links compatible with PCleGen5 or 400 GbE (output bandwidth x4 compared to present generation)
 - ➤ Make it available for LS3 LHCb detector upgrades
- Downstream tracking with FPGA (RETINA):
 - Event reconstruction primitives (clusters, tracks) found by FPGA immediately available to event building, freeing resources for other tasks
 - Already implemented in Run 3 for VELO clusters. LS3 proposal: realise a downstream tracking unit using hits from SciFi at 30 MHz (clear benefit for downstream KS and long-lived particle searches)

