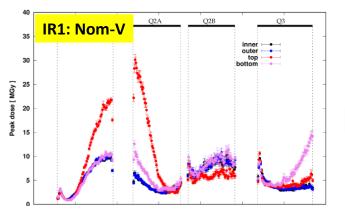


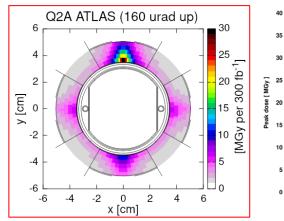
Status of the Accelerator

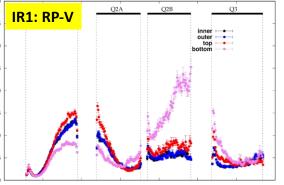
Matteo Solfaroli BE/OP 158th LHCC OPEN Session May 29th, 2024

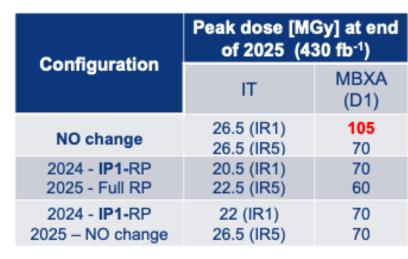


• 2024 run so far

- "Limitations"
- Outlook for the rest of the year

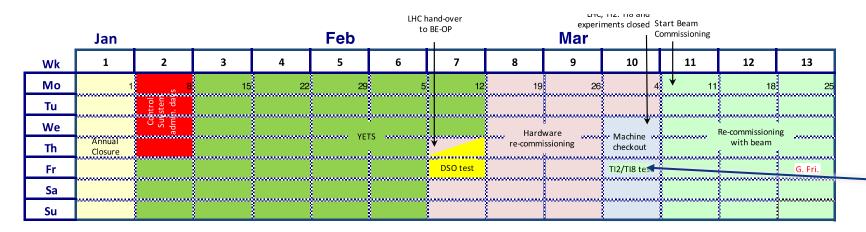

Reversed Polarity (RP) optics


Excessive dose deposition on magnets of Inner Triplet region (close to interaction point) can lead to <u>damage and failure</u>


Solutions to **redistribute the radiation**, allowing for longer lifetime of the equipment:

• Local optics change (implemented in P1, as most critical)

Example for IP1

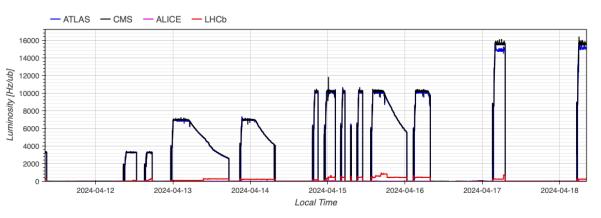

Estimated damage limit:

- 30 MGy for IT
- 90 MGy for D1

2024 LHC schedule v.2.0 - Q1+Q2

	First Apr beams @	Stable ፬ 6.8 TeV		ons with bunches	May				Jun				
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	Easter 1	♦ 8	15	22	29	6	13	Whitsup 20	27	3	10	17	24
Tu		Interle							today				
We		commiss &	ioning		1st May						Ż		
Th		intensity r		V		Ascension	VdM				E ISI		
Fr		Cryo reconfig.			}		program				viss G		
Sa											spare		
Su		Scrubbillig	3						8				

- Hardware commissioning completed in time
- First injection on 8th March (3 days ahead of schedule)
- **First STABLE BEAMS** at 6.8 TeV on 5th April (3 days ahead)
- Scrubbing succesful
- Intensity ramp-up completed
 in advance (1215b fill on 14.04)
- MD#1 & VdM successfully performed

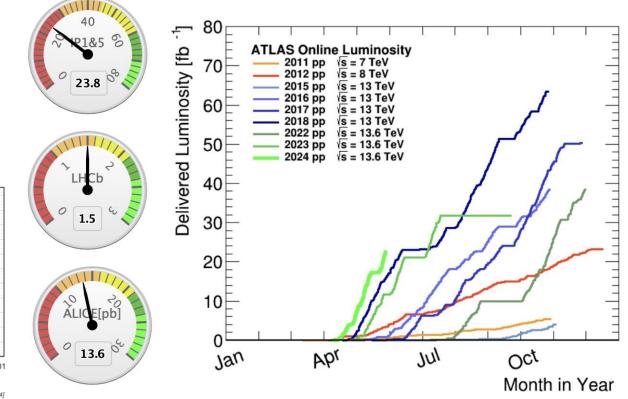


Establishing physics production

- Beam commissioning completed in the 4 weeks allocated:
 - Well established baseline, effective knowledge and control: early start (3 days) -> early stable beams (3 days)
 - Optics change accounted for ~1 week (as expected)
- Step-wise approach for **intensity ramp-up**:
 - Monitor behavior during >15h in stable beams
 - Validate progressively correct functionality of machine-protection system and operational tools
 - Bunch intensity (in collisions) ~1.55e¹¹ p/b

	nents closed Start Beam Commissioning					First Apr beams (Stable @ 6.8 TeV	Collisi 1200	May	
Wk	<u>10</u>		11	12	13	14	15	16	17	18
Мо		4	¥ 1 [.]	1 18	25	Easter 1	↓ 8	15	22	
Tu							Interl			
We	Machino	•		Re-commissionii	ng		commis		1st May	
Th	checkout			with beam			intensity	ramp up	Y	
Fr	Early sto	art)—			1st SB	Ci/o reconfig.			
Sa							Constitution			
Su							Scrubbing			

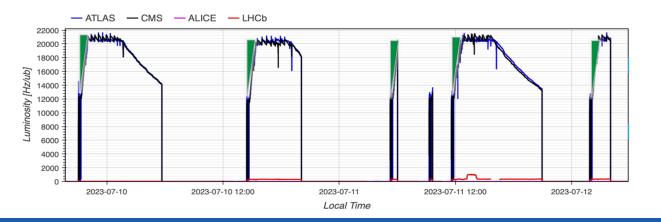
3/12 - 75 - 400 - 800 - 1200 - 1800 - 2400 - full machine*

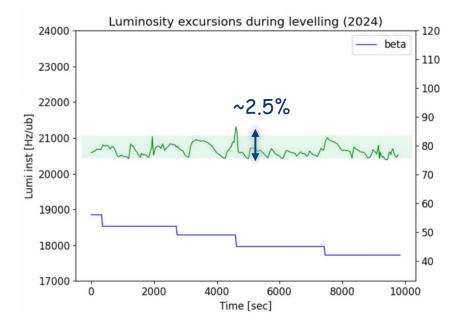


Physics production

- **Good availability** through the first part of the year
- ~24 fb⁻¹ in ATLAS/CMS
- Achieved **nominal rate** (as 2023)
- Peak luminosity at ~2.1e³⁴ cm⁻¹ s⁻¹ (limited by cryogenic)
- Pile-up at 65 ۲ ATLAS
 CMS
 ALICE
 LHCb 1. j..... 22000 20000 [Hz/ub] 18000 16000 2 14000 12000 10000 Peak Lu 8000 •• 6000 4000 . 2000 2024-03-15 2024-04-01 2024-04-15 2024-06-01 2024-03-01 2024-05-01 2024-05-15 Date [Generated at: 2024-05-27 13:26:04]

	First Apr beams	Stable @ 6.8 TeV	Collisi 1200	ons with bunches	May				Jun				
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	Easter 1	¥8	15	22	29	6		Whitsun 20	27	3	10	17	24
Tu		Interl	eaved										
We		commis	sioning		1st May						2 		
Th		intensity	ramp up	•		Ascension	VdM				191 191		
Fr		Cryo reconfig.					program				S		
Sa											spare		
Su		Scrubbing											





2024 operational improvements

"virtual lumi": based on machine and beam parameters gives theoretical luminosity

- Used for β^* levelling
- **2024 improvement:** Luminosity oscillations in 2.5% range (Run3 request was 5%)

Fast(er) reach of desired β^*

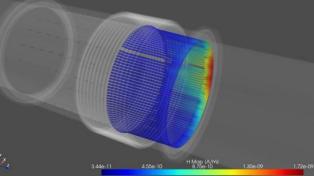
- LHC cycle (i.e. β* at collision) optimised for 1.8x10¹¹ p/b → ~45 min to reach target levelling luminosity
- Few % gain (depending on fill length)

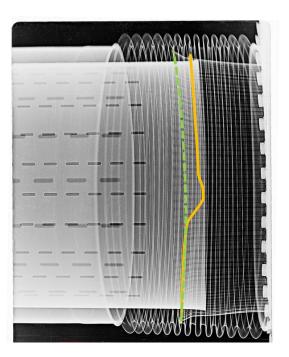
• 2024 run so far

"Limitations"

Outlook for the rest of the year

Vacuum module


IMPACT in 2023

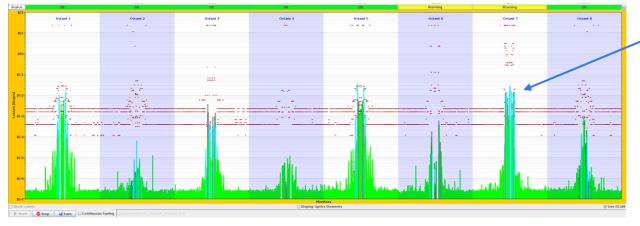

- ~5 days lost
- Bunch intensity limited to 1.6e¹¹ p/b
- Difficult to identify <u>intensity limitation</u> (strong dependence on contact quality)
- 2024 LHC operation presently limited to <u>1.6e¹¹ p/b</u>
- **Simulations ongoing** to assess impact of beam parameters on power deposition

LMC 479: limit bunch intensity at <u>1.6e¹¹ p/b</u>, while maximizing the bunch length throughout the cycle

VISUAL INSPECTION annealed/plasticised spring on the 212 mm vacuum module due to localized temperature increase to more than 500°C

EM simulations show localized heating

Consolidation plan:


- 47 replaced during 23/24 EYETS
- 24 foreseen in 24/25
 - No failure expected with ideal contact

Improved <u>control of bunch length</u> provides a safety factor of ~2 or more in power deposition

Beta* limitation (36 cm)

First observation: significant losses on secondary collimator (TCSPM.B4R7.B2) in fill 9530 (17th April) 300-400 um orbit shift needed to induce observed hierarchy breakage

Highest losses in the middle of insertion, instead of extremities, where primary collimators are located!

> Signature of **broken collimation hierarchy (protection at risk)**

No issue observed during machine validation (low intensity):

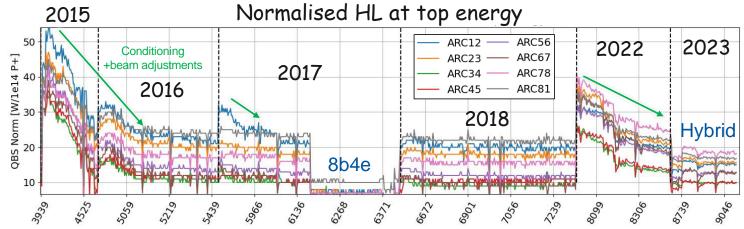
• Quite **some differences** between validations fills (single bunches) and physics fill with long trains (non-linearities, beam-beam effect, BPM response,...)

Beta* limitation (36 cm)

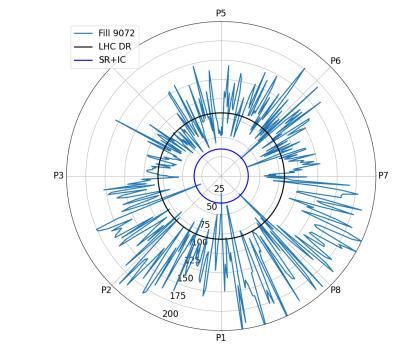
- Studies, tests and simulations to identify the origin of the problem
- Various contributions, no clear "smoking gun" identified:
 - Centres of suspected collimators within 0.1-0.2 sigma from nominal settings (<20 um)
 - No significant orbit change at collimators as function of filling scheme
 - Optics stable within <5% (45-30 cm)
 - Observed dependency on bunch intensity
 - Impact from non-linearities (octupoles, chromaticity)
 - Two-beams effect

Produced by halo (not primary beam), hitting only one collimator jaw

 could match off-momentum halo, due to non-linearities (beam-beam), combined with a somehow large dispersion

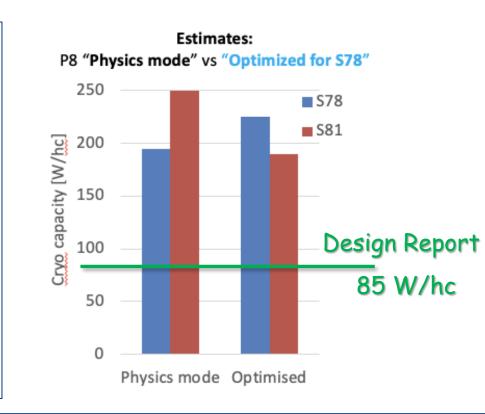

Test planned for this week

Physics production **limited to 36 cm** (about 1-2% loss), until the origin of the problem and possible mitigations are identified


Heat load

- Heat load (HL) deposited by the beams can become a limitation when not enough cryo capacity is available (presently well beyond the Design Report value)
- **Degradation observed** when sectors are vented to air (LS) ۲
- Non-homogeneous distribution across the machine
 - Sector 78 is the highest sector in Run3
- Gradual conditioning helps to increase the beam intensity

LHCC OPEN Session - 29.05.2024


Geographical HL distribution

Heat load in Run3

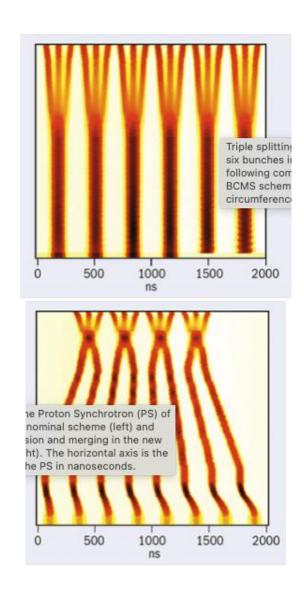
2023: HL kept under control thanks to **hybrid filling scheme** (8b4e and 36 bunch trains) – e-cloud suppressed at price of total number of bunches

2024

- Test with modified cryogenic configuration (capacity rebalanced between S78 and S81) hinted at possibility to operate LHC without hybrid scheme at 1.6e¹¹ p/b, allowing for:
 - Larger number of bunches
 - Better beam quality
- Beam generated HL, higher than expected, limits further the number of bunches (~100b less than in 2023)

Hybrid vs 48b vs 36b (today)

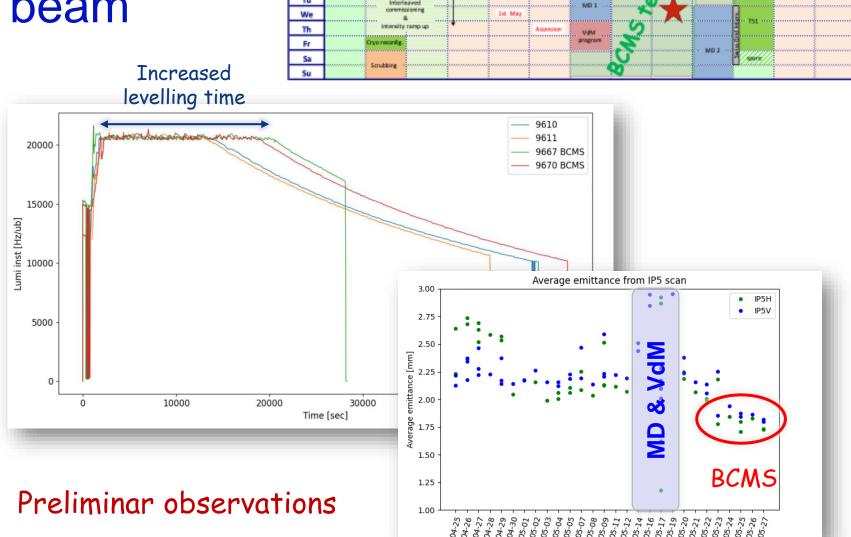
- Hybrid vs pure 25 ns beam
 - **PROS**: e-cloud free beam, NO heat load
 - Higher number of bunches (~100b)
 - **CONS**: mixed beam type (8b4e + 36b)
 - Continuous setup in the injectors (2 beam types to be maintained), with increased risk of availability limitations
 - Lower beam quality with less homogeneous bunch distribution
 - More difficult control, increased losses across LHC cycle
- 48b vs 36b trains
 - No (significant) difference in number of bunches
 - 36b means more injections (longer LHC flat-bottom), but allows to exploit BCMS (next slide) -> potential gain up to 10% in brightness
 - 36b generates less HL, allowing for larger cryogenic operational margin


Beam type	Max number of bunches						
Hybrid	2464						
48b trains	2355 (HL limited)						
36b trains	2352 (HL limited)						

BCMS vs 25 ns beam

With a filling scheme based on 3x36b patterns, the standard 25 ns and Batch Compression and (bunch) Merging and (bunch) Splitting (BCMS) beams are **interchangeable** transparently

Test with **optimized BCMS** beams in the LHC is ongoing (brightness theoretical **10% higher)**:


- Smaller emittance is beneficial for **losses reduction**, especially at injection
- If smaller emittance preserved through the LHC cycle, better equivalent cross-section

BCMS vs 25 ns beam

- Test operation with **BCMS** beam until TS#1 (unless major problems come out) to establish performance difference
- Few fills needed to **adjust** • the working point (fight emittance growth at injection)
- Once set, clear increase of • 25-30% in levelling time
- Potential gain of 6-8% in • integrated luminosity

Collisions with

1200 bunches

17

16

May

18

20

Jun

22

23

24

25

26

First Stable

15

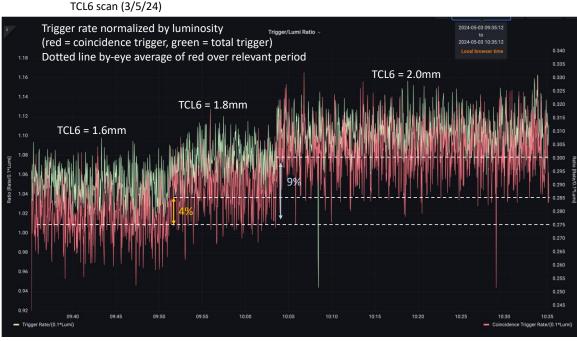
Interleaved

14

Wk Mo

Tu

Performance reach

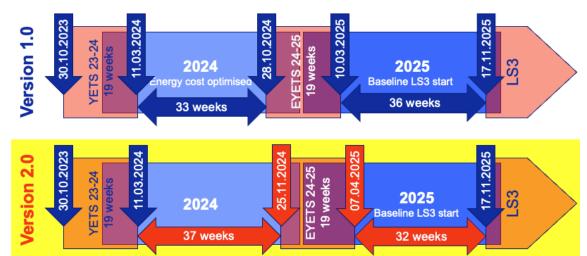

- Despite the above-mentioned "limitations" (beta*, number of bunches and bunch intensity), physics production is **nicely following expectations** and target is in reach
 - LHCb levelling >=15h
- 2024 operational configuration allows performance similar to 2023 with more homogeneous beam and better operational control
- Some improvements still possible

FASER/SND background

- FASER and SND background rates significantly higher (~double) wrt 2023 (non-RP optics)
 - Implies more frequent emulsion exchanges (if available!)
- Background tests for FASER demonstrated little impact of collimation system on background:
 - increase driven by TeV-scale muons, originating from IP

Coincidence trigger rate about 4% higher with 1.8mm and 9% higher with 2.0mm: OK for FASER for periods with no emulsion

• 2024 run so far


"Limitations"

Outlook for the rest of the year

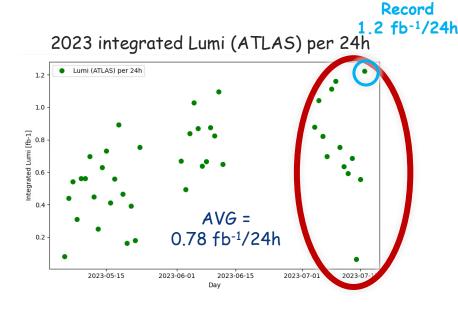
LHC schedule - changes

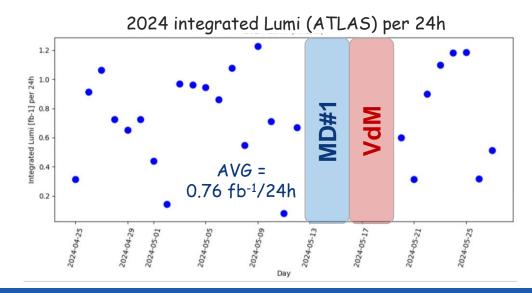
- Injectors YETS shifted by 5-weeks
 - 3-weeks reduction, more physics
- LHC YETS shifted by 4-weeks (Start date 28.10 -> 25.11)
 - 19 weeks length (beam-to-beam) maintained
 - Extended time used for proton physics
- 2025 run shortened <u>by 4 weeks</u> -> one Technical Stop removed
- NO additional technical stop for 2024 run

Activity	2024+2025 v1.0 [days]	2024+2025 v2.0 [days]	Diff [days]
Proton physics	269	274.5	+5.5
lon physics & p-p ref. run (Oxygen included)	44.5	45	+0.5
Scheduled stops & recovery	28.5	22.5	-6

2024 LHC schedule

Activity	Duration [days]	Ratio [%]
Beam Commissioning & Intensity ramp-up	41	15.8
Scrubbing	3	1.2
25 ns physics (>1200 bunches)	147.5	56.9
Special physics runs (incl. setting-up)	2	0.8
Pb-Pb ions & p-p ref. setting-up	6	2.3
Pb-Pb ions physics & p-p ref. run	23	8.9
Technical stop	9	3.5
Technical stop recovery	2	0.8
Other scheduled stops	2.5	1.0
Machine Development	23	8.9
Total:	259	100

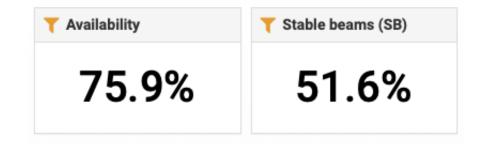

	First Apr beams	t Stable @ 6.8 TeV	Collis 1200	sions with 0 bunches	May				Jun				
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	Easter	↓ 8	15	22	29	6	13	Whitsun 20	27	3	3 10	17	24
Tu		Interle	eaved				MD 1						
We			<u>د ا</u>		1st May						2 0 TS1		
Th		intensity	ramp up	v		Ascension	VdM				rid Int		
Fr		Cryo reconfig.		L			program				viss G		
Sa		Scrubbing ~									spare		
Su		Ŭ									1		
	Jul				Aug				Sep				Oct
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	1	8	15	5 22	29	5	12	19	26	2	g	16	23
Tu													
We		ļ						MD 3			Į		
Th				Į						Jeune G.	L		
Fr		ļ		Į							ļ		
Sa		Į		Į									MD 4
Su											1		
	/IP visits CERN 70	End	25 ns run [08:00]		Nov			End ([06	of run :00] <mark>Dec</mark>				
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Мо	30	7	14	21	28	4	MD 6 11	18	¥ 25	2	s s	16	23
Tu				TS2	p-p ref								
We					run								Xmas
Th			v	p-p ref setup			Pb-Pb Ion run			YI	ets		Annual Closure
Fr			MD 5	setup	Cryo reconfig.								
Sa					Pb lon								
Su					setting up								



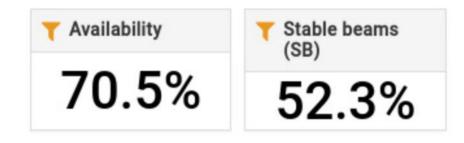
Performance

- 2024 production rate reached 2023 values (~0.8 fb⁻¹/24h)
 - Peak record of 1.2 fb⁻¹/24h
- Scaling the target by the increased number of pp physics days, 110 fb⁻¹ should be in reach





Availability is key


- Availability is <u>THE key factor</u> for accelerator performance
- Accelerator Fault Tracking (AFT) systems allows for analysis and cataloguing of down time
- Availability factor was constant through Run2 and Run3 for small (<24h) faults
- "Long faults" have been <u>so far</u> dominant for Run 3

2023 availability during production period

2024 availability during production period

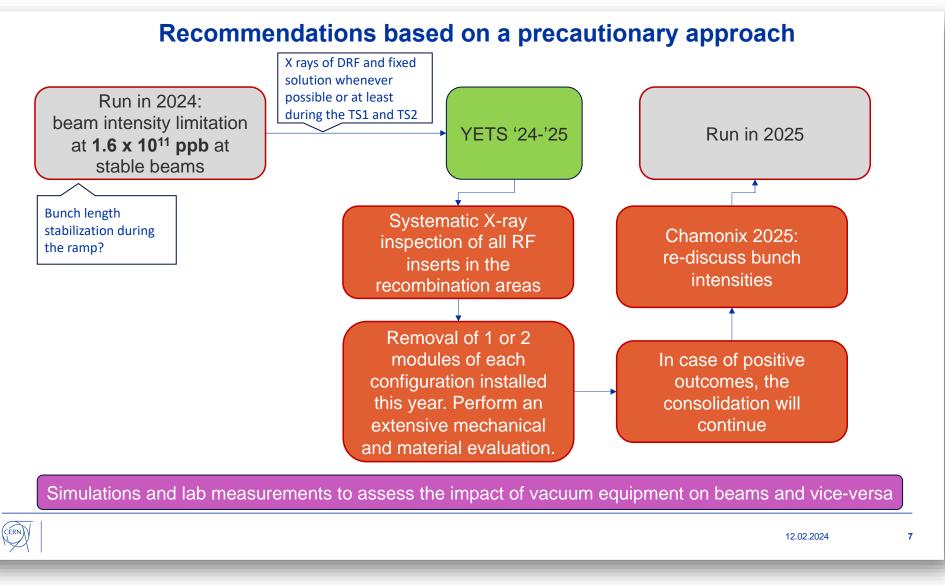
Conclusions

- 2024 Run is progressing well
 - Some improvements still possible (BCMS optimised, lower beta*)
- Despite of a few "limitations", production rate is in line with expectations
 - **Bunch intensity** limited to 1.6e¹¹ p/b for risk mitigation
 - Beta* (temporarily) limited to 36 cm, until problem identified
 - Heat load limits number of bunches
- 2024 LHC schedule v2.0 allocates 23.5 additional days to pp physics
 - 110 fb⁻¹ should be in reach (provided good availability)

Thanks for your attention

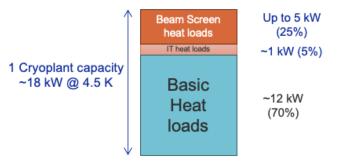
SPARE

2024 LHC schedule


	Versio	n 2.0	Versio	Gains &	
Activity	Duratio n [days]	Ratio [%]	Duratio n [days]	Ratio [%]	Losses
Beam Commissioning & Intensity ramp-up	41	15.8	42	18.2	=
Scrubbing	3	1.2	3	1.3	=
25 ns physics (>1200 bunches)	147.5	56.9	124	53.7	+ 23.5
Special physics runs (incl. setting-up)	2	0.8	2	0.9	=
Pb-Pb ions & p-p ref. setting-up	6	2.3	6	2.6	=
Pb-Pb ions physics & p-p ref. run	23	8.9	22.5	9.7	+ 0.5
Technical stop	9	3.5	9	3.9	=
Technical stop recovery	2	0.8	2	0.9	=
Other scheduled stops	2.5	1.0	0.5	0.5	=
Machine Development blocks (incl. floating MDs)	23	8.9	20	8.7	+ 3
Total:	259	100 %	231	100 %	+28

2025 LHC schedule

	Versior	า 0.6	Versior	Gains &	
Activity	Duration [days]	Ratio [%]	Duration [days]	Ratio [%]	Losses
Beam Commissioning & Intensity ramp-up	36	16.1	37	14.7	=
Scrubbing	2	0.9	2	0.8	=
25 ns physics (>1200 bunches)	123	54.9	141	56	-18
Special physics runs (incl. setting-up)	2	0.9	2	0.8	=
Oxygen ion setting-up	4	1.8	4	1.6	=
Oxygen ion physics	4	1.8	4	1.6	=
Oxygen ion recovery	0.5	0.2	0.5	0.2	=
Pb-Pb ions & p-p ref. setting-up	6	2.7	6	2.4	=
Pb-Pb ions physics & p-p ref. run	18	8.0	18	7.1	=
Technical stop	8	3.6	13	5.2	- 5
Technical stop recovery	2	0.9	4	1.6	- 2
Other scheduled stops	1.5	0.7	0.5	0.2	+1
Machine Development blocks (incl. floating MDs)	17	7.6	20	7.9	- 3
Total:	224	100%	252	100	- 28



P. Chiggiato @ LMC #479

Heat load expectations Beam screen cryo capacities during HL-LHC era

- LHC cryoplants are supplying many devices in parallel at different temperatures
 - > Thermal shields between 50 K and 75 K
 - > Main superconducting magnets at 1.9 K (ARC dipoles/quadrupoles)
 - > Stand Alone superconducting magnets at 4.5 K (D2, D3, Q4, Q5, Q6)
 - RF cavities at 4.5 K
 - > DFB at 4.5 K with their current leads and superconducting links
 - > Inner Triplet at 1.9 K around experiments (dynamic heat loads, depending on luminosity)
 - > Beam Screens (BS) between 4.5 K and 20 K (dynamic heat loads, depending on beams)

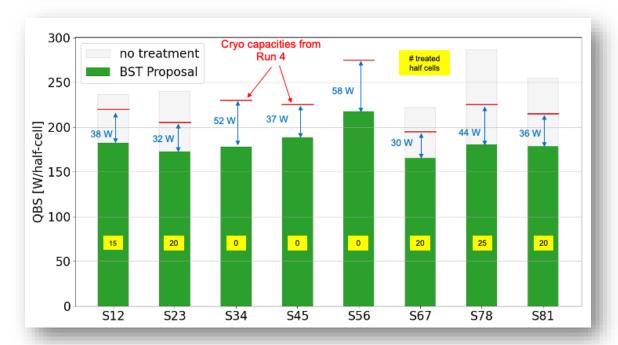
All LHC cryoplants are slightly different and have different capacities & loads (RF, SAM, DFB, triplets, etc.)

Expected changes in Run 4++	Helium massflow	Q @ 1.9 K [per sector]	BS <u>Capa</u> 4.5 K - 20 K [per ARC]	BS Capa 4.5 K - 20 K [per half-cell]	Concerned sectors
Removal of IT at P1 & P5 in LS3 (Run4)	-12 g/s	-280 W	+1.3 kW	+25 W/hc	S12, S81, S45, S56
Increase of Lumi at P8 with LHCb++ after LS4 ? (Run5)	+11 g/s	+260 W	-1.2 kW	-23 W/ <u>hc</u>	S78, S81

➔ The available beam screen cryogenic capacities will change from Run 4

Beam screen treatment

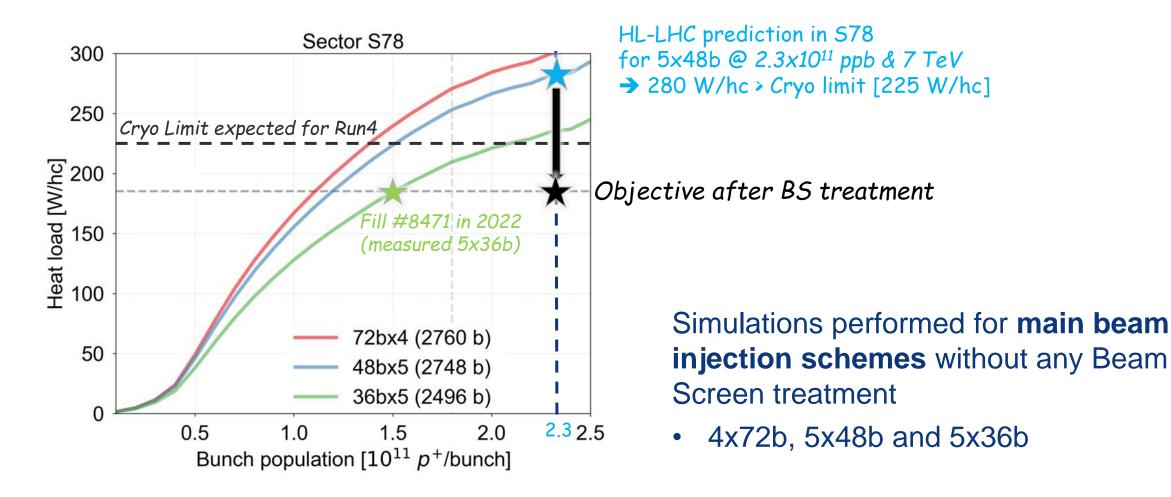
Risks:


- Degradation of un-treated half-cells during future LS
 - Extremely difficult to quantity and impossible to localize
- Higher than expecter heat loads of treated half-cells
- Low(er) number of treated half-cells in LS3

Possible mitigations?

- Treat larger number of half-cells (more margins)
- Produce less e-cloud
 - Filling scheme (36b/48b (2022), hybrid (2023))
 - Continue the beam screen treatment in future LS

OBJECTIVES


- Remove CuO and/or increase surface carbon concentration on selected BS
- Beam Screen (BS) surface passivation (robustness against re-oxidation)

A scenario treating 100 half-cells looks realistic

Heat load expectations

