### **ATLAS Status Report**

Adriana Milić (CERN) On behalf of the ATLAS Collaboration

LHCC open session May 29, 2024





### Outline



Highlights from

- Data taking and performance
- Physics analysis
- Phase-II







### 2024 beam commissioning





- Splash event triggered for the first time by Phase-I system
- Great for **timing in detector**!



### 2024 beam commissioning





Horizontal muon event from special run provided for ATLAS for

- Timing in detector
- Calibrate

Big thank you to the LHC team!



### 2024 data taking





Collision event from first stable beam run of 2024 at 13.6 TeV



### 2024 data taking





- Data taking efficiency at ~ 94.5%
- Detector operational fraction in most systems **close to 100%**

| Subdetector                       | Number of Channels | Approximate Operational Fraction |
|-----------------------------------|--------------------|----------------------------------|
| Pixels                            | 92 M               | 95.1%                            |
| SCT Silicon Strips                | 6.3 M              | 98.4%                            |
| TRT Transition Radiation Tracker  | 350 k              | 95.6%                            |
| LAr EM Calorimeter                | 170 k              | 100%                             |
| Tile Calorimeter                  | 5200               | 98.8%                            |
| Hadronic End-Cap LAr Calorimeter  | 5600               | 99.9%                            |
| Forward LAr Calorimeter           | 3500               | 99.8%                            |
| LVL1 Calo Trigger Fibers          | 7500               | 100%                             |
| LVL1 Calo Trigger Channels (LAr)  | 34 k               | 99.7%                            |
| LVL1 Calo Trigger Channels (Tile) | 1920               | 98.4%                            |
| LVL1 Muon RPC Trigger             | 383 k              | 99.8%                            |
| LVL1 Muon TGC Trigger             | 312 k              | 100%                             |
| MDT Muon Drift Tubes              | 344 k              | 99.7%                            |
| MicroMegas NSW                    | 2.1 M              | 95.8%                            |
| STGC NSW                          | 358 k              | 93.3%                            |
| RPC Barrel Muon Chambers          | 383 k              | 94.2%                            |
| TGC End-Cap Muon Chambers         | 312 k              | 99.2%                            |
| AFP                               | 430 k              | 90%                              |
| AFP TOF                           | 2x16               | 94%                              |
| LUCID                             | 2x12+8             | 100%                             |
| ZDC                               | 2x(4+16)           | 100%                             |

### 2024 data taking







- Currently running at a L1A rate of ~95 kHz at  $\mathcal{L} = 2.1e34$  cm<sup>-2</sup>s<sup>-1</sup> at a peak  $\langle \mu \rangle = 63$
- Higher beam background rates seen this year
  - Might be due to changed optics





9

**Commissioning progress** 

- All primary triggers seeded from Phase-I FEXes
- Small number of legacy triggers kept for validation comparisons
  - electron (e)-FEX fully enabled in 2023 (L1 rate reduction of 10%)
  - jet (j)-FEX and global (g)-FEX commissioning being finalized
  - Trigger items in the progress of being unprescaled for small-R jets, large-R jets, energy sums, MET
  - Disabling of legacy items in parallel with Phase-I validation



CER

### Phase-I: Muon New Small Wheel (NSW)





#### **Commissioning progress**

- **sTGC trigger coincidence** already enabled in 2023 and yielded 7-8 kHz rate savings (70% of trigger sectors (TS) enabled)
- In 2024 rejection increased to ~14 kHz (92% of sectors enabled)
  - Rate from real muons also higher due to higher efficiency Ο
- Progressive enabling of Micromegas trigger coincidence is in progress
  - Showing even better efficiency (> 95%)!Ο





### HLT improvements

### HLT in good shape

- HLT output bandwidth at  $\sim 7.5$  GB/s, nominal limit at 8 GB/s
  - Plans to reduce ATLAS event size once  $\bigcirc$ Phase-I fully commissioned

140

130

120

110

100

90

80

70

60

50

40

30

20

10

Memory usage [GB]

HLT CPU, readout system, and DAQ network non-limiting

### **CPU** performance

Aided by trigger algorithmic 0 optimisations, gain in throughput from OS change to Alma 9 and HLT multithreaded framework improvements

#### **B-tagging**

New Graph Neural Network tagger Ο (GN2) further improved rejection for same efficiency

#### Application throughput [events / s] ATLAS Preliminary ATLAS Preliminary Data 2024, $\langle \mu \rangle = 63$ Data 2024. $\langle \mu \rangle = 63$ 60 - G- Hybrid: 2 threads -- Hybrid: 2 threads -- O-Hybrid: 4 threads -- O- Hybrid: 4 threads - - - Hybrid: 8 threads -- Hybrid: 8 threads 50 - - Multi-threading -- -- Multi-threading ------Multi-processing -----Multi-processing Hardware limit = 128 GB 40 30 20 10

#### 00 10 20 50 60 70 80 30 10 20 30 40 Number of events processed in parallel Number of events processed in parallel With currently used processing approach (Hybrid: 4 threads) high

throughput maintained while lowering memory consumption with respect to previously used scheme (Hybrid: 2 threads).

#### Running 16 forks \* 4 threads $\rightarrow$ 64 events in parallel

50 60 70 80

### HLT improvements

# CERN

### HLT in good shape

- HLT output bandwidth at ~ 7.5 GB/s, nominal limit at 8 GB/s
  - Plans to reduce ATLAS event size once Phase-I fully commissioned
- HLT CPU, readout system, and DAQ network non-limiting

### • CPU performance

 Aided by trigger algorithmic optimisations, gain in throughput from OS change to Alma 9 and HLT multithreaded framework improvements

#### • B-tagging

• New **Graph Neural Network tagger** (GN2) further improved rejection for same efficiency



New tagging algorithm (*fastGN2*) utilizes **primary-vertex information**, while old algorithm (*fastDIPS*) does not  $\rightarrow$  much **better performing c-jet and light-jet rejection** for all working points!

### Software and Computing Activities

- Smooth distributed computing operations
  - Grid sites continuously providing reliable resources, significant opportunistic resources available (HPC centers)
  - First significant Grid-based-GPU test data reprocessing campaigns ran in the last month!
- Two papers submitted
  - <u>Run 3 Software and Computing paper</u> (ATLAS SW design, workloads, DBs, distributed computing, analysis tools...)
  - <u>Total Cost of Ownership evaluation of Google resources</u> (project with Google to evaluate how ATLAS can best employ commercial cloud resources)



### Software and Computing Activities

- Adoption of small data formats proceeding at a good pace
  - Many groups moving to smaller derivation format.
- Added about 8k cores of ARM processors to several sites worldwide
  - $\circ$   $\quad$  More power efficient than processors used so far
  - Plots from recent HEPix reports on ARM studies





### **Since last LHCC** on February 28

- 35 Papers
- 4 Conference notes
- 2 PubNote
- 7 Physics Briefings

In this talk: A selection of new results with data from Run 1, 2, and 3!

**Impressive paper output** of the collaboration:

- 340 papers with full Run 2 dataset
- 9 Run 3 papers

Highlights from physics



Run: 450227 Event: 6327489 2023-04-21 19:24:16 CEST

### Measurement of the W boson mass and width



- **First measurement of the** *W* **width** at the LHC in combined fit with *W* mass
- Result achieved by analysing kinematic spectra of *W* decays into electrons and muons
- Most precise single-experiment  $\Gamma_{\rm W}$  measurement to date!





### Electroweak Wyjj production





- Sensitive to the quartic gauge boson couplings via VBS!
- Fiducial and differential cross section measurement









- Observed significance of the electroweak  $W_{\gamma jj}$  process >  $6\sigma$
- Measured fiducial cross section  $\sigma_{\rm EW} = 13.2 \pm 2.5$  fb consistent with LO predictions
- Differential cross sections measured as function of six kinematic variables

19

### Electroweak $W^+W^-jj$ production



- Observation of  $W^+W^-$  in association with jets
- Fiducial cross section measurement
- Different lepton flavor final states selected



A neural network is used to separate the signal from top quark and strong  $W^+W^-jj$  production



![](_page_19_Figure_8.jpeg)

### W and Z production cross section measurement (Run 3 data!)

![](_page_20_Picture_1.jpeg)

21

- Fiducial and total  $W^{\pm}$  and Z boson cross sections measurement
- ... and their ratios and the ratio of top-antitop pair and W boson fiducial cross sections

![](_page_20_Figure_4.jpeg)

- top-antitop over *W* boson fiducial cross section ratios slightly overestimated by some theoretical predictions
  - Consistent with <u>Run 3 top-antitop cross-section</u> <u>measurement</u>

arXiv:2403.12902, Physics Briefing

 $W^+ \to \ell^+ \nu = 4250 \pm 150 \text{ pb}$ 

 $W^{-} \rightarrow \ell^{-} \overline{\nu} = 3310 \pm 120 \text{ pb}$ 

 $Z \rightarrow \ell^+ \ell^- = 744 \pm 20 \text{ pb}$ 

### Probing lepton universality

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

- **Challenge**: Collect unbiased *W* sample
  - Systematic uncertainty be reduced by making a simultaneous measurement of the analogous ratio  $R_{z}^{\mu\mu/ee}$

![](_page_21_Figure_5.jpeg)

| ATLAS                                                                                                                      |                                                   |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| LEP2<br>e⁺e⁻→WW, √s=183-207 GeV                                                                                            | ••                                                |
| ATLAS $pp \rightarrow W, \sqrt{s}=7 \text{ TeV}, 4.6 \text{ fb}^{-1}$                                                      | ••••                                              |
| LHCb<br>pp→W, √s=8 TeV, 2 fb <sup>-1</sup>                                                                                 |                                                   |
| $\begin{array}{c} \text{CMS} \\ \text{pp} \rightarrow t\bar{t}, \sqrt{s} = 13 \text{ TeV}, 36 \text{ fb}^{-1} \end{array}$ | <b>*</b>                                          |
| PDG average                                                                                                                | <b>⊢_</b>                                         |
| ATLAS (this result)<br>pp→tī, √s=13 TeV, 140 fb <sup>-1</sup>                                                              | FO-                                               |
| 0.92 0.94 0.96                                                                                                             | 0.98 1 1.02                                       |
|                                                                                                                            | $B(W \rightarrow \mu \nu)/B(W \rightarrow e \nu)$ |

 $R(\mu/e) = 0.9995 \pm 0.0045$ 

- Confirming SM at 0.5% level!
  - Improves single-experiment precision by factor of two!
- Adds to previous ATLAS  $R(W \rightarrow \tau/\mu)$  result (Nature Physics 17, 813 (2021))

### DiHiggs searches

![](_page_22_Picture_1.jpeg)

- Search for boosted Higgs pair production via VBF in the *bbbb* final state
- Search sensitive to the **anomalous quartic couplings**  $\kappa_{2v}$  between two vector bosons and two Higgs bosons

![](_page_22_Picture_4.jpeg)

![](_page_22_Figure_5.jpeg)

![](_page_22_Figure_6.jpeg)

![](_page_22_Figure_7.jpeg)

- Data agree with background only hypothesis
- Constraints when combining boosted and resolved results  $0.55 < \kappa_{2V} < 1.49$
- $\kappa_{2V} = 0$  excluded with an observed significance of 3.8 $\sigma$
- Statistically limited analysis

### DiHiggs searches

![](_page_23_Picture_1.jpeg)

- Search for Higgs pair production in final states with leptons, taus and photons  $HH \rightarrow bbZZ, 4V, VV\tau\tau, 4\tau, \gamma\gamma VV, \gamma\gamma\tau\tau$ 
  - **Explored for the first time in ATLAS!**
- BDT scores are used to separate signal from background

![](_page_23_Figure_5.jpeg)

![](_page_23_Figure_6.jpeg)

95% CL upper limit on HH signal strength µHH

30

### Legacy Run 2 HH combination

![](_page_24_Figure_1.jpeg)

CERI

#### arXiv:2403.15332

### 26

All Higgs production modes included! Benchmark models from exotic Higgs decays to axion-like particles (ALPs) considered

Product of two BDT discriminants used to distinguish events with displaced from those with prompt jets

# Light long-lived particles (LLPs) using displaced vertices

![](_page_25_Figure_5.jpeg)

Possible with improved track reconstruction pass for 0 large impact parameter tracks!

![](_page_25_Figure_7.jpeg)

- beyond the SM is observed
- constraints to date on Higgs BR for  $m_{\rm s} < 40 {\rm ~GeV}$  and  $1 < c\tau_{s} < 100 \text{ mm!}$

![](_page_25_Figure_10.jpeg)

![](_page_25_Figure_11.jpeg)

![](_page_25_Figure_12.jpeg)

√s = 13 TeV. 37.5 – 140 fb<sup>-1</sup>

ATLAS

![](_page_25_Picture_13.jpeg)

Heavy Higgs

![](_page_26_Picture_1.jpeg)

![](_page_26_Figure_2.jpeg)

arXiv:2404.12915, Physics Briefing

27

### Heavy Higgs

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

arXiv:2404.18986

### Heavy Higgs summary plot

3

tan

![](_page_28_Figure_1.jpeg)

Excluded regions of  $[m_{\lambda}, \tan\beta]$ plane excluded in the hMSSM via direct searches for heavy Higgs

CER

29

gg H/A,  $H/A \rightarrow tt$  adds to exclusion at low  $tan\beta!$ 

![](_page_29_Picture_0.jpeg)

ATLAS Simulation
√s=14 TeV, HL-LHC
tt, ⟨µ⟩=200

# **Highlights from Phase-II**

Display of a simulated ttbar event with  $\mu = 200$  (1600 tracks) in the ATLAS ITk

### ATLAS Phase-II Upgrade overview

**New Muon Chambers** - Inner barrel region with new RPC and sMDT detectors - Improved trigger efficiency/resolution and

### reduced fake rate

**New Inner Tracking Detector (ITk)** 

- All silicon, coverage

up to  $|\eta| = 4$ 

- Less material and finer segmentation

### Upgrade of trigger and DAQ system

- L0 trigger at 1 MHz
- Improved High Level Trigger

#### **Electronics upgrades**

- Replacement of on/off detector electronics for LAr, Tile, and Muon detectors
- 40 MHz continuous readout with finer segmentation

#### **High Granularity Timing Detector (HGTD)**

- Forward region  $(2.4 < |\eta| < 4.0)$
- Precision time reconstruction (30 ps) with Low Gain Avalanche Diodes (LGADs)
- Improved pileup separation and bunch-by-bunch luminosity

#### **Additional upgrades**

- Luminosity detectors
- HL-ZDC for heavy ion physics

**Most upgrades** moved into production!

### Inner Tracker (ITk)

![](_page_31_Picture_1.jpeg)

- All ASICs in production
- Good progress on services work (out of critical paths)
- Production of **ITk common structures** proceeds well
- Pixel
  - Qualification of 2 out of 4 hybridisation vendors completed
  - Module production started
- Strips
  - Sites ready for production
  - Strip cold noise mostly understood & mitigated
  - Strip sensor cracking of glued modules on staves after thermocycling
    - Under intense follow up (critical path of Phase-II upgrade)

![](_page_31_Picture_13.jpeg)

### Inner Tracker (ITk)

CERN

- All ASICs in production
- Good progress on services work (out of critical paths)
- Production of **ITk common structures** proceeds well
- Pixel
  - Qualification of 2 out of 4 hybridisation vendors completed
  - Module production started
- Strips
  - Sites ready for production
  - Strip cold noise mostly understood & mitigated
  - Strip sensor cracking of glued modules on staves after thermocycling
    - Under intense follow up (critical path of Phase-II upgrade)

![](_page_32_Picture_13.jpeg)

### Calorimeter electronics upgrades

![](_page_33_Picture_1.jpeg)

#### • LAr Calorimeter

- New prototype of the **front-end board (FEB2)** tested successfully
- LAr Signal Processing (LASP) prototype being tested at P1

#### • Tile Calorimeter

- **Phase-II demonstrator** installed in ATLAS and taking data
- Good overall progress in all areas
  - Main Board production

1.05

0.95

- LVPS preproduction
- Calibration system design
- …

![](_page_33_Figure_12.jpeg)

### Muons, TDAQ, HGTD

# CERN

#### • Muon detector

- All **sMDT** at CERN
- RPC chambers in production
- Full **RPC readout chain prototype** being tested

### • TDAQ

- Common module of Global Trigger (CGM) under intense testing
- Designing new **FELIX board** with a more powerful FPGA
- High Granularity Timing Detector (HGTD)
  - First complete prototype of the most challenging board (PEB) produced

![](_page_34_Picture_11.jpeg)

### Conclusions

![](_page_35_Picture_1.jpeg)

- 2024 data taking in full swing
  - Detector in good shape, Phase-I systems in last phase of commissioning
  - Trigger, data acquisition as well as reconstruction chains and offline computing working well
- Sustained rich physics production
  - Continued paper output and high-profile results
  - Several Run 3 results already released!
- Substantial progress on Phase-II upgrade
  - Mass production has started in many areas
  - Remaining technical challenges being addressed

Thanks to the LHC team for efficient ramp up and continuous collaboration!

![](_page_35_Picture_12.jpeg)

![](_page_36_Picture_0.jpeg)

# Back up

### Luminosity calibration 2024

#### Full program completed May 14 - 20

- Non-Factorization (NF) measurement in collision
  - Non-factorization = non Gaussian shape of luminous region
  - Increased in Run 3 wrt Run 2
  - Added scanning pattern also used by CMS to better evaluate and reduce NF
- vdM scans + Length scale calibration
  - Determine the visible cross section via beam separation scans
- Calibration transfer fills
  - Calibrate non-linear response of LUCID to luminosity and  $\langle \mu \rangle$  using offline algorithms that are linear (tracks and calorimeter)
  - $\circ \quad Scan from low \langle \mu \rangle to high \langle \mu \rangle and from individual bunches to trains$

![](_page_37_Figure_11.jpeg)

New scan pattern for improved sensitivity to NF

### vdM vs LSC

![](_page_38_Picture_1.jpeg)

![](_page_38_Figure_2.jpeg)

Calibrate visible x-sec using various separation points 2D-scans, where the other dimension is off-axis allows us to measure non-factorizing components

![](_page_38_Figure_4.jpeg)

Position of one beam is used as reference, the other (test) beam is steered around that. Measured is the response of the position change as a function of the beam steering input, the "length scale"

### Challenges at high pileup $\langle \mu \rangle$

#### L1 rate main limiting factor

- 95 kHz when leveling at  $\langle \mu \rangle = 64$  at  $\mathcal{L}=2.1e34$ 
  - Beyond that L1 rate complex deadtime starts diverging
- L1 rate reduction thanks to Phase-I systems

![](_page_39_Figure_5.jpeg)

#### L1A rate with 2352 bunches

#### HLT in good shape

- HLT output bandwidth at ~ 7.5 GB/s, nominal limit at 8 GB/s
  - Plans to reduce ATLAS event size once Phase-I fully commissioned
- HLT CPU, readout system, and DAQ network non-limiting

![](_page_39_Picture_11.jpeg)

### Physics briefings

![](_page_40_Picture_1.jpeg)

#### Briefings

![](_page_40_Picture_3.jpeg)

#### Looking for the extended family of the Higgs boson

The ATLAS Collaboration has just published a search for two new Higgs bosons, X and S, that would interact with the Standard-Model Higgs boson. Physics Binleng 12 & April 2024

![](_page_40_Picture_6.jpeg)

#### Menu of the day: Di-Higgs soup!

If spotting one Higgs boson is interesting, what happens when you spot two? ATLAS researchers are looking for the production of two Higgs bosons using a new technique. Physic Briding 19 April 2024

![](_page_40_Picture_9.jpeg)

#### ATLAS explores Z boson production with heavy-flavour quarks Using the full LHC Run-2 dataset, the ATLAS Collaboration measured Z boson production in association with both bottom (b) and charm (c) quarks, the latter for the first time in ATLAS. Physics Briefing: 15 April 2024

![](_page_40_Picture_11.jpeg)

### ATLAS detects electrons and photons with greater clarity New results released by the ATLAS Collaboration describe the significant advancements made in identifying electrons and photons. Physic Brinfer, 12 April 2024

![](_page_40_Picture_13.jpeg)

ATLAS provides first measurement of the W-boson width at the LHC In a groundbreaking new result, the ATLAS Collaboration has measured the W-boson width for the first time at the Large Hadron Collider (LHC). Physics Binferg 15, 4pan 2024

![](_page_40_Picture_15.jpeg)

Updates > Briefing > ATLAS detects electrons and photons with greater clarity

![](_page_40_Picture_17.jpeg)

ATLAS detects electrons and photons with greater clarity  ${\mbox{$^{12}$ April 2024 ] By ATLAS Collaboration}}$ 

# Several results presented in <u>physics</u> <u>briefings</u> for a more general public.

## Physics briefings

![](_page_41_Figure_1.jpeg)

CERN

### W and Z production cross section measurement (2022 data!)

![](_page_42_Picture_1.jpeg)

43

• Fiducial and total *W*± and *Z* boson cross sections, their ratios and the ratio of top-antitop quark pair and *W*-boson fiducial cross sections are measured in proton–proton collisions

• *ttbar* over *W*-boson fiducial cross-section ratios are slightly overestimated by some of the theoretical predictions

![](_page_42_Figure_4.jpeg)

Adriana Milic

# Beamspot

- Shift of approx. 0.2 mm in x- and y-direction observed compared to 2023 and larger variations in z-direction
  - No impact on physics expected: transparent to Ο tracking algorithms

![](_page_43_Figure_3.jpeg)

### BeamSpotPublicResults

![](_page_43_Figure_5.jpeg)

ATLAS Preliminary

+ β\* = 30 cm

 $+ \beta^* = 36 \text{ cm}$ 

vs = 13.6 TeV

Date

# Luminosity

- Beam Monitor for ATLAS
  - Prototype for an additional ATLAS luminosity monitor for the HL-LHC with low geometrical acceptance
    - Modifications for 2023 data-taking to enhance detector's durability
    - Different types of configurations with varying thresholds: DAQ, DAQ (gain-corrected)
  - Lower mu dependence observed compared to LUCID

![](_page_44_Figure_7.jpeg)

Heavy Higgs

Search for a heavy scalar *H* or pseudo-scalar A predicted by 2HDM in association with a top pair, with the H/A decaying to a top pair and opposite sign leptons in the final state

![](_page_45_Picture_2.jpeg)

GNN is used to optimise the signal-background discrimination

![](_page_45_Picture_4.jpeg)

![](_page_45_Figure_5.jpeg)

- Results combined with previous search from ATLAS with multilepton final states
- Combined observed limit ranges from 14.2 fb at  $m_{A/H}$  of 400 GeV and 5.0 fb at 1000 GeV

#### ATLAS-CONF-2024-002

May 29, 2024

46

### Length scale calibration in pictures

![](_page_46_Figure_1.jpeg)

CER

### vdM scan in pictures

![](_page_47_Figure_1.jpeg)

![](_page_47_Picture_3.jpeg)

### Phase-II points of attention

![](_page_48_Picture_1.jpeg)

- The schedule remains critical
  - ITk Pixel hybridisation process
    - Managed to stabilise schedule lately
  - ITk Sensor cracking in the ITk Strip
    - Start of production will be delayed until reliable solution is found
    - Production process will need to be accelerated to recover time afterwards
  - TDAQ FELIX board development
    - Needed to adopt a higher-end FPGA than originally assumed
- Additional resources will likely be needed to
  - Address the technical issues
  - Speed up the production

![](_page_48_Figure_13.jpeg)