

Finanziato dall'Unione europea NextGenerationEU

Lamarr: implementing the flash-simulation paradigm at LHCb

M. Barbetti (INFN CNAF) on behalf of the LHCb Simulation Project

HSF Detector Simulation Working Group | 3 June 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

The LHCb experiment and its upgrades

The **LHCb detector** [1] is a single-arm forward spectrometer designed to study particles containing *b* and *c* quarks.

The **Upgrade I** of the LHCb experiment [2] is finally complete. What's new?

- replacement of readout electronics
- new full software trigger system

Computing requirements for simulation

The standard for simulation at LHCb is **Detailed Simulation**:

- simulation of all radiation-matter interactions
- simulated hits in detectors processed as real data
- high CPU cost (more than 90% [3] used during LHC Run 2)
- <u>unsustainable</u> in the long term (*i.e.*, LHC Run 3 and those to come next)

Using Detailed Simulation only for LHC Run 3 needs will far exceed the pledged resources of LHCb.

Developing *faster* simulation strategies is mandatory to meet the upcoming and future requests for simulated data samples.

LHCb data processing

LHCb data processing

LHCb data processing

Need for faster options for simulation

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

General data processing

Fast detector simulation

Fast detector simulation

Flash detector simulation

Flash detector simulation

Priorities for flash-simulated samples

The simulation production is driven by the LHCb physics program, *i.e.* heavy hadron decays

- most of the events (76%) don't require ECAL
- photons and electrons are less requested

The simulation cost is driven by Geant4

- simulating secondary particles is expensive
- RICH and calorimeter systems dominate the cost
- parameterizing the detector response allows to save a lot of computing resources

Priorities for LHCb flash-simulation:

- 1. tracking + PID \rightarrow most of charged particles (no electrons)
- **2.** ECAL \rightarrow photons
- 3. tracking + PID \rightarrow specialized treatment for electrons

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Lamarr: the LHCb flash-simulation option

Lamarr [9-11] is the novel flash-simulation framework of LHCb, able to offer the fastest option for simulation. Lamarr consists of a **pipeline of** (ML-based) **modular parameterizations** designed to replace both the simulation and reconstruction steps.

The Lamarr pipeline can be split in two branches:

- a branch treating charged particles relying on tracking and particle identification (RICH + MUON + GPID) parameterizations
- 2. a branch facing the *particle-to-particle correlation* problem innate in the **neutral objects** (ECAL clusters) reconstruction

Lamarr: the LHCb flash-simulation option

Lamarr [9-11] is the novel flash-simulation framework of LHCb, able to offer the fastest option for simulation. Lamarr consists of a **pipeline of** (ML-based) **modular parameterizations** designed to replace both the simulation and reconstruction steps.

The Lamarr pipeline can be split in two branches:

- a branch treating charged particles relying on tracking and particle identification (RICH + MUON + GPID) parameterizations
- a branch facing the *particle-to-particle correlation* problem innate in the **neutral objects** (ECAL clusters) reconstruction

Lamarr: the LHCb flash-simulation option

Lamarr [9-11] is the novel flash-simulation framework of LHCb, able to offer the fastest option for simulation. Lamarr consists of a **pipeline of** (ML-based) **modular parameterizations** designed to replace both the simulation and reconstruction steps.

The Lamarr pipeline can be split in two branches:

- a branch treating charged particles relying on tracking and particle identification (RICH + MUON + GPID) parameterizations
- 2. a branch facing the *particle-to-particle correlation* problem innate in the **neutral objects** (ECAL clusters) reconstruction

The k-to-k detector problem

Unambiguous *k*-to-*k* relation between generated particles and reconstructed objects \rightarrow detector response modeled in terms of **efficiency** and "**resolution**" (e.g., high-level quantities)

The k-to-k detector problem

Unambiguous *k*-to-*k* relation between generated particles and reconstructed objects \rightarrow detector response modeled in terms of **efficiency** and "**resolution**" (e.g., high-level quantities)

The k-to-k detector problem

Unambiguous *k*-to-*k* relation between generated particles and reconstructed objects \rightarrow detector response modeled in terms of **efficiency** and "**resolution**" (e.g., high-level quantities)

<u>Conditional</u> **Generative Adversarial Networks** (or *Deep Generative Models*, in general) trained on detailed simulated samples to parameterize the **high-level response** of LHCb detector (e.g., reconstruction errors, differential log-likelihoods, multivariate classifier output).

Generative Adversarial Networks

Generative Adversarial Networks (GAN) [12] rely on the simultaneous training of two neural nets:

- the discriminator network (D) is trained by a <u>classification task</u> to separate the generator output from the reference dataset;
- the generator network (G) is trained by a <u>simulation</u> <u>task</u> to reproduce the reference dataset trying to fake the discriminator.

This framework corresponds to a minimax two-players game

Generative Adversarial Networks

Generative Adversarial Networks (GAN) [<u>12</u>] rely on the simultaneous training of two neural nets:

- the discriminator network (D) is trained by a <u>classification task</u> to separate the generator output from the reference dataset;
- the generator network (G) is trained by a <u>simulation</u> <u>task</u> to reproduce the reference dataset trying to fake the discriminator.

This framework corresponds to a minimax two-players game

Lamarr parameterizes the high-level response of the LHCb tracking system relying on the following models:

- **propagation** → approximates the trajectory of a charged particles through the dipole magnetic field
- acceptance → predicts which of the generated tracks lay within a sensitive area of the detector
- efficiency → predicts which of the generated tracks in acceptance are properly reconstructed by the detector
- **resolution** → parameterizes the errors introduced by the reconstruction algorithms to the track parameters
- covariance \rightarrow parameterizes the uncertainties assessed by the Kalman filter procedure

Lamarr parameterizes the high-level response of the LHCb tracking system relying on the following models:

- **propagation** → approximates the trajectory of a charged particles through the dipole magnetic field
- acceptance → predicts which of the generated tracks lay within a sensitive area of the detector
- efficiency → predicts which of the generated tracks in acceptance are properly reconstructed by the detector
- **resolution** → parameterizes the errors introduced by the reconstruction algorithms to the track parameters
- covariance → parameterizes the uncertainties assessed by the Kalman filter procedure

Efficiency (DNN model)

Lamarr parameterizes the high-level response of the LHCb tracking system relying on the following models:

- \blacksquare **propagation** \rightarrow approximates the trajectory of a charged particles through the dipole magnetic field
- acceptance → predicts which of the generated tracks lay within a sensitive area of the detector
- efficiency → predicts which of the generated tracks in acceptance are properly reconstructed by the detector
- **resolution** → parameterizes the errors introduced by the reconstruction algorithms to the track parameters
- covariance → parameterizes the uncertainties assessed by the Kalman filter procedure

Lamarr parameterizes the high-level response of the LHCb tracking system relying on the following models:

- **propagation** → approximates the trajectory of a charged particles through the dipole magnetic field
- acceptance → predicts which of the generated tracks lay within a sensitive area of the detector
- efficiency → predicts which of the generated tracks in acceptance are properly reconstructed by the detector
- resolution → parameterizes the errors introduced by the reconstruction algorithms to the track parameters
- covariance → parameterizes the uncertainties assessed by the Kalman filter procedure

Lamarr parameterizes the high-level response of the LHCb PID system relying on the following models:

- **RICH** → parameterizes DLLs resulting from the RICH detectors
- $\blacksquare \quad \textbf{MUON} \rightarrow \textbf{parameterizes likelihoods resulting from the MUON system}$
- isMuon → parameterizes the response of a FPGA-based criterion for muon loose boolean selection
- **Global PID** → parameterizes the global high-level response of the PID system, consisting of CombDLLs and ProbNNs

Lamarr provides separated models for **muons**, **pions**, **kaons**, and **protons** for each PID set of variables.

Lamarr parameterizes the high-level response of the LHCb PID system relying on the following models:

- **RICH** → parameterizes DLLs resulting from the RICH detectors
- \blacksquare MUON \rightarrow parameterizes likelihoods resulting from the MUON system
- **isMuon** → parameterizes the response of a FPGA-based criterion for muon loose boolean selection
- **Global PID** → parameterizes the global high-level response of the PID system, consisting of CombDLLs and ProbNNs

Lamarr provides separated models for **muons**, **pions**, **kaons**, and **protons** for each PID set of variables.

- Lamarr parameterizes the high-level response of the LHCb PID system relying on the following models:
- **RICH** \rightarrow parameterizes DLLs resulting from the RICH detectors
- MUON → parameterizes likelihoods resulting from the MUON system
- **isMuon** → parameterizes the response of a FPGA-based criterion for muon loose boolean selection
- **Global PID** → parameterizes the global high-level response of the PID system, consisting of CombDLLs and ProbNNs

Lamarr provides separated models for **muons**, **pions**, **kaons**, and **protons** for each PID set of variables.

0.00

0

Charged particle pipeline: the PID system

- **RICH** \rightarrow parameterizes DLLs resulting from the RICH detectors
- **MUON** \rightarrow parameterizes likelihoods resulting from the MUON system
- **isMuon** \rightarrow parameterizes the response of a FPGA-based criterion for muon loose boolean selection
- **Global PID** \rightarrow parameterizes the global high-level response of the PID system, consisting of CombDLLs and ProbNNs

Lamarr provides separated models for **muons**, **pions**, **kaons**, and protons for each PID set of variables.

Efficiency (DNN model)

 $n \in (2.5, 3.5)$

50

LHCb Simulation Preliminary

25

Missione 4 • Istruzione e Ricerca

100 Momentum [GeV/c]

- **RICH** \rightarrow parameterizes DLLs resulting from the RICH detectors
- **MUON** \rightarrow parameterizes likelihoods resulting from the MUON system
- **isMuon** \rightarrow parameterizes the response of a FPGA-based criterion for muon loose boolean selection
- **Global PID** \rightarrow parameterizes the global high-level response of the PID system, consisting of CombDLLs and ProbNNs

Lamarr provides separated models for **muons**, **pions**, **kaons**, and protons for each PID set of variables.

ProbNNp > 0.5 (sim) ProbNNp > 0.5 (model)

50

2016 MagUp

0.6

Missione 4 • Istruzione e Ricerca

100 Momentum [GeV/c]

29

The n-to-m detector problem

The flash-simulation of the ECAL detector is a <u>non-trivial task</u>:

- **bremsstrahlung radiation**, converted photons, or merged π^0 may lead to have *n* generated particles responsible for *m* reconstructed objects (in general, with $n \neq m$)
- the *particle-to-particle correlation problem* limits the validity of strategies used for modeling the unambiguous k-to-k detector response \rightarrow describing the case as a <u>translation problem</u>

In our case, the source (italian) sentence is a **sequence of** *n* **generated photons** and the target (english) sentence is the corresponding **sequence of** *m* **reconstructed clusters**.

Neutral particles pipeline: the ECAL detector

Two different approaches are currently under investigation:

- **signal photons** \rightarrow for photons included in the decay modes under study
 - k-to-*k* condition enforced via **geometrical and energetic matching**
 - ECAL response described in terms of <u>efficiency</u> and <u>resolution</u>.
- seq2seq approach → for photons produced by secondary process
 - □ ECAL <u>event-level</u> description inspired by translation problems
 - □ data sorted by energy \rightarrow *Transformer* [13] + discriminator
 - □ graph topology → Graph Neural Network [14] + discriminator

Integration with the LHCb software stack

The integration of Lamarr with Gauss unlocks:

- interface with all the LHCb-tuned physics generators (e.g., Pythia8, EvtGen)
- compatibility with the distributed computing middleware and production environment
- providing ready-to-use datasets for analysis

Most of the Lamarr parameterizations are ML-based:

- need for a fast development cycle (new architectures or training strategies easily outperform predecessors)
- Al community extremely versatile in terms of software technologies (no decades tradition of HEP community)

Models deployment \rightarrow transcompilation approach [15,16]

- compatibility with the <u>scikinC</u> package
- models compiled as shared library and dynamically linked to the main application (Gauss)
- distribution through WLCG nodes via <u>cvmfs</u>
- dynamic links **avoid to recompile** the main application for model updates → fast development cycle

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Lamarr validation campaign

Lamarr provides the LHCb high-level response by relying on a pipeline of ML-based modules

To validate the *flash-simulation* philosophy, we employ the following decay mode:

- non-trivial semileptonic decay mode
 - crucial interface with LHCb-tuned physics generators
- **muons**, **pions**, **kaons**, and **protons** in a single decay
 - all particle species for which Lamarr provides models
- Lamarr-based samples, detailed simulated samples, and plots obtained from the LHCb analysis software
 - testing the integration with the current version of Gauss
- models training based on a cocktail of heavy flavour decays
 - $\Box \quad \Lambda_b^0 \to \Lambda_c^+ \mu^- X \text{ represents a negligible fraction of the sample}$

Lamarr validation campaign

Lamarr provides the LHCb high-level response by relying on a **pipeline of ML-based modules**

To validate the *flash-simulation* philosophy, we employ the following decay mode:

- non-trivial semileptonic decay mode
 - crucial interface with LHCb-tuned physics generators
- **muons**, **pions**, **kaons**, and **protons** in a single decay
 - □ all particle species for which Lamarr provides models
- Lamarr-based samples, detailed simulated samples, and plots obtained from the LHCb analysis software
 - testing the integration with the current version of Gauss
- models training based on a **cocktail** of heavy flavour decays
 - $\Box \quad \Lambda_b^0 \to \Lambda_c^+ \mu^- X \text{ represents a negligible fraction of the sample}$

<u>_HCb-FIGURE-2022-014</u>

Lamarr validation campaign

Lamarr provides the LHCb high-level response by relying on a **pipeline of ML-based modules**

To validate the *flash-simulation* philosophy, we employ the following decay mode:

- non-trivial semileptonic decay mode
 - crucial interface with LHCb-tuned physics generators
- **muons**, **pions**, **kaons**, and **protons** in a single decay
 - all particle species for which Lamarr provides models
- Lamarr-based samples, detailed simulated samples, and plots obtained from the LHCb analysis software
 - testing the integration with the current version of Gauss
- models training based on a **cocktail** of heavy flavour decays
 - $\Box \quad \Lambda_b^0 \to \Lambda_c^+ \mu^- X \text{ represents a negligible fraction of the sample}$

Preliminary timing studies

- Geant4-based simulations are expensive in terms of CPU
- Lamarr allows to reduce the CPU cost for the simulation phase of (at least) two-order-of-magnitude
- Pythia8 is the new **major CPU consumer** → the generation of *b*-baryons is expensive

* data obtained from the LHCbPR portal (2023/05)

- Lamarr derives high-quality distributions from particle-guns
- The particle-gun approach drops to **almost zero** the cost of the Generation phase
- PGun + Lamarr → three-order-of-magnitude speed-up

Preliminary timing studies

- Geant4-based simulations are expensive in terms of CPU
- Lamarr allows to reduce the CPU cost for the simulation phase of (at least) two-order-of-magnitude
- Pythia8 is the new **major CPU consumer** → the generation of *b*-baryons is expensive

* data obtained from the LHCbPR portal (2023/05)

- Lamarr derives high-quality distributions from particle-guns
- The particle-gun approach drops to **almost zero** the cost of the Generation phase
- PGun + Lamarr → three-order-of-magnitude speed-up

Future of the Lamarr project

Integration of Lamarr within Gauss

- **mandatory** to work with the LHCb software ecosystem (*e.g.*, Gaudi, generators, DIRAC, Bender)
- unappealing for researches outside of the LHCb community

Efforts to decouple Lamarr from Gaudi \rightarrow <u>SQLamarr</u>

- LHCb Event Model mimic with a SQLite database
- set of APIs for loading data from physics generators and defining pipelines from models compiled as shared libraries

The development of SQLamarr moves in two different and complementary directions

- minimal dependencies, thread-safe database engine, pipeline configuration → integration with Gauss-on-Gaussino [17], the newer version of Gauss (based on <u>Gaussino</u>)
- providing a *stand-alone* flash-simulation framework → high-quality description of the LHCb experiment relying on ML-based parameterizations and particle-gun generated samples

The role of ICSC for flash-simulation

The **lifecycle** of a generic flash-simulation model includes:

- designing
- training
- optimization [<u>18</u>]
- deployment [<u>15,16</u>]
- validation

development steps involve GPU nodes (HPC paradigm)

validation relies on the production environment (HTC paradigm)

The aim of **ICSC** (*Italian Center for SuperComputing*) is to create the national digital infrastructure for research and innovation, leveraging existing HPC, HTC and Big Data infrastructures and evolving towards a **cloud data-lake model**.

Conclusions

- The Lamarr framework offers to LHCb the fastest option for simulation needed to meet the upcoming and future requests for simulated samples
- GAN-based models succeed in reproducing the errors introduced in the detection and reconstruction steps of both the tracking and PID systems of the LHCb experiment
- Transformers and GNNs powered by the attention mechanism and an adversarial-driven training are under investigation to parameterize the event-level response of ECAL to traversing photons
- A preliminary validation campaign demonstrates that a pipeline of subsequent ML-based models succeeds in reproducing high-quality reconstructed quantities, at a few-percent fraction of the cost
- Great effort to adapt the whole Lamarr workloads on distributed and federated resources taking the most from all the computing paradigms (HTC, HPC, and Cloud)

Missione 4 • Istruzione e Ricerca

Any questions or comments?

Lucio Anderlini (INFN Firenze) email: lucio.anderlini@cern.ch

Matteo Barbetti (INFN CNAF) email: <u>matteo.barbetti@cern.ch</u>

References

- 1. LHCb collaboration, A. Augusto Alves Jr., JINST 3 (2008) S08005
- 2. LHCb collaboration, R. Aaij et al., JINST 19 (2024) P05065, arXiv:2305.10515
- **3.** LHCb collaboration, <u>LHCB-TDR-017</u>, 2018
- 4. LHCb collaboration, M. Clemencic et al., J. Phys.: Conf. Ser. 331 (2011) 032023
- 5. LHCb collaboration, D. Popov, EPJ Web Conf. 214 (2019) 02043
- 6. D. Müller et al., Eur. Phys. J. C 78 (2018) 1009, arXiv:1810.10362
- 7. V. Chekalina et al., EPJ Web Conf. 214 (2019) 02034, arXiv:1812.01319
- 8. LHCb collaboration, M. Rama et al., EPJ Web Conf. 214 (2019) 02040
- 9. L. Anderlini et al., PoS ICHEP2022 (2022) 233
- 10. LHCb Simulation Project, M. Barbetti, arXiv:2303.11428
- 11. LHCb Simulation Project, L. Anderlini et al., EPJ Web Conf. 295 (2024) 03040, arXiv:2309.13213
- 12. I. J. Goodfellow et al., arXiv:1406.2661
- **13.** A. Vaswani *et al.*, <u>arXiv:1706.03762</u>
- 14. F. Scarselli et al., IEEE Trans Neural Netw 20 (2009) 61
- 15. L. Anderlini and M. Barbetti, PoS CompTools2021 (2022) 034
- 16. R. Conlin et al., Eng. Appl. Artif. Intell. 100 (2021) 104182
- 17. M. Mazurek, M. Clemencic and G. Corti, PoS ICHEP2022 (2022) 225
- **18.** M. Barbetti and L. Anderlini, <u>arXiv:2301.05522</u>

BACKUP

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Propagation in magnetic field [1/2]

Crossing position and momentum coordinates don't require to know exactly the trajectory of particles

- tracking stations in region with **no-magnetic field** \rightarrow straight track segments
- **no-dissipative effects** → constant variation of the momentum along the bending axis

The trajectory of a particle can be modeled by a single change of direction of the momentum vector in the xz-plane \rightarrow single-kick dipole approximation requires only two parameters:

- $\Delta p_x constant variation of momentum p along bending axis$
- z_{kick} coordinate of point where magnet effect is condensed

Propagation in magnetic field [2/2]

An expression for the \boldsymbol{z}_{kick} coordinate follows from trivial trigonometric formulas

- by considering **negligible** Δp_v
- by requiring the momentum **conservation law**

$$z_{
m kick} = rac{x'-x+z\cdot t_x-z'\cdot t'_x}{t_x-t'_x} \qquad {
m where} \qquad egin{cases} t_x = p_x/p_z \ t'_x = p'_x/p'_z \end{cases}$$

By fitting q/p versus z_{kick} with a parabolic parametric function, we are able to infer the crossing position and momentum coordinates simply relying on trigonometry.

RICH detectors: alternative solution

Recent developments in deep generative models reveal the effectiveness of using Normalizing Flows for fast detector simulation \rightarrow promising results obtained by CMS with its *FlashSim* application

Preliminary study for LHCb flash simulations \rightarrow RICH system

- same input/output of GAN-based models
- conditioned pdf directly learned by Flow-based models
- Masked Autoregressive Flows (MAF) used for these studies

Promising results in proton-kaon separation

- as for GANs, RichDLLpK not included in input conditions
- GAN performance benefits from the auxiliary training process (RichDLLpK only used by the discriminator)
- MAF-based models obtain good results even without the auxiliary training process

MUON detectors: alternative solution

Recent developments in deep generative models reveal the effectiveness of using Normalizing Flows for fast detector simulation \rightarrow promising results obtained by CMS with its *FlashSim* application

Preliminary study for LHCb flash simulations \rightarrow MUON system

- same input/output of GAN-based models
- conditioned pdf directly learned by Flow-based models
- Masked Autoregressive Flows (MAF) used for these studies

Unsatisfactory results in muon-proton separation

- as for GANs, muDLL not included in input conditions
- GAN performance strongly benefits from the auxiliary training process (muDLL only used by the discriminator)
- MAF-based models fail to reproduce the peaked structures of the muDLL distribution without relying on the auxiliary procedure

Signal photons: definition

Photons included in the studied decay modes \rightarrow accurate model of ECAL

- **unambiguous relation** between photons and (*matching*) clusters \rightarrow *k*-to-*k* system
- **standard strategies** can be employed to describe the ECAL high-level response

The *k*-to-*k* relation follows from geometrical and energetic constraints:

$$\sqrt{(x_{\rm photon} - x_{\rm cluster})^2 + (y_{\rm photon} - y_{\rm cluster})^2} < R_M$$
 $|E_{\rm photon} - E_{\rm cluster}| < 2\,\sigma_E$

under these conditions a photon is considered reconstructed

- The *k*-to-*k* relation enables to parameterize the ECAL high-level response by using the same techniques employed for tracking and PID models
 - efficiency → MLP-based model trained to predict the reconstruction probability
 - **resolution** → GAN-based model trained to infer high-level quantities from generator-level information

Signal photons: validation

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Seq2seq approach

Aiming to directly facing the particle-to-particle correlation problem, the ECAL response can be described as a **translation problem**

- <u>source</u>: sequence of *n* generated photons
- <u>target:</u> sequence of *m* reconstructed clusters

Transformer-based model investigated to describe this *n*-to-*m* system

- encoder-decoder architecture powered by attention mechanism
- encoder designed to process the source sequence (*i.e.*, generated photons), and parameterize photon-to-photon correlations
- *decoder* designed to process the target sequence (*i.e.*, reconstructed clusters), and parameterize both cluster-to-cluster and photon-to-cluster correlations
- training driven by a **regression task** → event-level ECAL description
- convergence trick → adversarial-powered training relying on DeepSets

Graph2graph approach

Relaxing the sorting statement at the basis of the seq2seq approach, we end up with the fact the graphs better describe the *topology* of calorimeter simulations \rightarrow graph2graph approach

GNN-based model investigated to describe this *n*-to-*m* system

- heterogeneous graph composed of two families of nodes (photon/cluster)
- photon edges follow a geometrical criteria in the (x, y, E)-space
- cluster edges randomly initialized to finite number of photon/cluster nodes
- message passing procedure powered by the attention mechanism
 - immutable photon features and <u>updatable</u> photon hidden states
 - updatable cluster features and <u>updatable</u> cluster hidden states
- training driven by a **regression task** \rightarrow event-level ECAL description
- convergence trick → **adversarial-powered training** relying on DeepSets

The transpiling approach

For a seamless integration of the trained parameterizations in the LHCb simulation framework models have to be applied to each single particle \rightarrow **thousands of independent calls per event**

Even a small latency (*e.g. context switching*) wastes unacceptable amount of CPU resources

Lamarr solution \rightarrow we transpile the trained models in C and compile them to binaries, dynamically linked at runtime

- LHCb tool: <u>scikinC</u> [15]
- Possible partial migration to: <u>keras2c</u> [16]

Hopaas: multi-site optimization campaigns

source: https://hopaas.cloud.infn.it

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Hopaas: client-server system

source: https://hopaas.cloud.infn.it

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Hopaas: web dashboard

source:

https://hopaas.cloud.infn.it