SLAC Overview

European Laboratory Directors Group Meeting

John Schmerge

June 6, 2024

Outline

SLAC Summary Major Projects SLAC Science/R&D

Today, SLAC is a vibrant, multi-program laboratory

FY24 forecasted costs by funding source Total \$679M

We are ~\$200M bigger than we were in FY20

FY23 headcount:

- 1,784 Full-time Employees
- 960 Facility Users

SLAC

- 181 Postdocs

- 272 Grad Students
- 46 Faculty; 16 Joint
- 53 Undergrads

SLAC Accelerator R&D Portfolio

Recent Challenges

- A serious accident in December 2022
- Accident investigation & launch of Institutional Improvement Plan
- Ongoing focus on disciplined operations and safety culture
- 3 site wide power outages within 12 months seriously disrupting accelerator operations and delaying projects
- Although the LCLS-II Project was completed, we see the first sign of SC cavity field emission increasing

Chi-Chang Kao Lab Director 2012-2023

Three Lab Directors

Stephen Streiffer Interim Lab Director 2023

Jahn Sarrao Lab Director 2023

SLAC Accelerators

- Four DOE User Facilities
 - MeV-UED 6 MeV
 - SSRL 3 GeV
 - LCLS > 4 GeV
 - FACET-II 10 GeV
- SLAC test facility
 - NLCTA <10 MeV 200 MeV

SLAC Major Projects portfolio

A few highlight of major progress

The LSST Camera has arrived in Chile! The Rubin Observatory is expecting its first light soon!

Results from Nov 2023 Electro-Optical Testing

Gain and Q.E. corrected, Flat Image

LCLS-II has Lased and Transitioned to Operations

LCLS FEL complex based on normal and superconducting Accelerators

Simultaneous operation of NC and SC based beams

NC linac and FEL delivers beams to users

- Currently operating in Run 22 with excellent performance
- Maintaining and developing advanced capabilities = e.g. seeding, multi-bunches and attosecond pulses

SC linac and FEL achieved kHz Repetiton Rates

- Continuing commissioning and ramp up of rate and beam power (50 pC, 8 kHz, 3.5 GeV, 1.4 kW)
- Delivery of SC based x-ray beam to x-ray hutches for Instrument commissioning and users.

LCLS-II Science will be Transformational

Seeing how physics drives chemistry

- Reveal coupled electronic and nuclear motion in molecules
- Capture the initiating events of charge transfer chemistry with sub-fs resolution

Ultrafast

SLAC

How to accelerate chemical reactions

- Correlate catalytic reactivity and structure
- Real-time evolution with chemical specificity and atomic resolution

Understanding material function and failure

- Characterize dynamic systems without long-range order
- Directed design of energy conversion and storage materials

Coherence

Watching biology in action

 Study large scale conformational changes via solution scattering

SLAC

- Physiological conditions
- Dynamics ties structure to function

Extreme brightness

hv three to be the total total

High repetition rate

CBXFEI **CBXFEL project** – ANL/SLAC/Spring-8 collaboration Top view of first seven HXR undulators Station B & F Station A x-ray return pipe Station C Station E Station-B

Chicanes to by-pass optics (including relocating undulators)

Stations A/B house 4-diamond crystals (including nanopositioning stages)

X-ray optics/diagnostics inside stations A/B/C/D/E/F

- **Double bunches from the SLAC Cu RF linac** with 624 bucket separation (218.4 ns).
- Photon energy 9.831 keV. Diamond (400) at 45 degree. Cavity length 65.500873 m
- Initial performance goals: measure 2nd pass gain and quantify cavity loss.

FACET-II: Plasma Wakefield R&D

- Initial focus on beam quality in plasma wakefield accelerators and generating beams with unprecedented brightness in plasma based injectors
- Additional programs will exploit unprecedented beam intensity to create bright gamma-ray bursts and study **SFQED** phenomena
- Creating ML/AI based virtual diagnostics to characterize extreme beams

SLAC

Development Strategy Report

d Accelerator Concepts Research Roadmap Workshop

National User Facility based on a 10 GeV beam and their interaction with Lasers and Plasmas

Generating extreme beams using PWFA at FACET-II

- Electron drive beam from FACET-II photoinjector of µm-scale bunch length enters plasma exciting strong wake
- Witness tail experiences linear chirp ~ 1%/µm (1000x larger than FACET-II linac)
- Witness tail is compressed in weak downstream chicane to ~10nm bunch length
- This Early Career Research Program will carry out experiments to explore compressing distinct witness bunches and varying charge, energy, bunch length for different applications

SLAC has broad HEP Programs

Sector 30 Transfer Line:

Community Statement of Science and Support

2019 summary of science program, with 18 user statements of interest

SLAC European Lab Directors Group - June 6, 2024 Short bunch + high repetition rate test beams

Electron inelastic scattering data for Neutrinos

Light Dark Matter eXperiment (LDMX)

17

SLAC

Detector R&D, ML & Microelectronics Highlights over the last ~12 months

Programmable logic on ASIC using FABulous framework:

2nd Generation Development: ASIC+eFPGA functionality demonstrated (TSMC 28nm)

Fabulous v2 ASIC (1mm x 1mm)

Precision timing for 4D tracking

and Calorimetry: 28nm chip containing 6.25ps high-precision time-to-digital converters and custom delay-line test devices submitted at the end of January

Qubit-based Sensor Readout for Dark Matter

Search: SLAC digital RF platform demonstrated successful readout of superconducting quantum-based sensor for dark matter search

probed with oscilloscope

Beam Physics & Modeling Progress: Generative Phase Space Reconstruction (GPSR)

- In FY'23 developed a novel method to reconstruct high-dimensional phase space distributions using generative machine learning and backward differentiable physics simulation and experimentally demonstrated detailed, fast reconstruction of 4D phase space, with very few measurements required.
- Have now extended this to an experimental demonstration of 6D phase space reconstruction, with >100x faster measurement and reconstruction than existing methods.
- Worked with collaborators to validate the method for characterization of flat beams [Kim, et al., <u>arXiv:2402.18244</u>], showing detailed reconstruction and good agreement with bulk scalar emittance metrics derived from standard methods.
- Ryan Roussel applying for HEP ECA this year to develop the GPSR method for more challenging use cases and heterogeneous diagnostics.

SRF Gun R&D at MSU

Scope

- Design and construct a SRF quarter-wave cavity and cryomodule including a SC solenoid magnet
- Develop cathode manipulator-stalk system and test gun cryomodule using a metal cathode (no beam)

Blank Cavity Test

Parameter	Requirement	Measurement
4.4 K Q_0 at nominal field	> 1.0x10 ⁹	1.7x10 ⁹
Surface E _{peak}	> 34 MV/m	40 MV/m
FPC Q _{ext} Setting	1.0x10 ⁷	3.0x10 ^{7*}
Input Power at 30 MV/m	625	208*
Microphonics amplitude over 4 hours	< 19 Hz	1σ = 4.2 Hz
Q _{ext} of cavity probe	> 2x10 ¹¹	5x10 ¹¹
FPC DC bias voltage		1 kV
Tuner Range at RT	+6/–15 mm	Stroke > 21 mm
Slow tuning range	60 kHz	60 kHz

Integrated Test Setup: FPC, Tuner, Cryostat Assembly

Amazing things happen at SLAC every day

PRESS RELEASE

SLAC completes construction of the largest digital camera ever built for astronomy →

Once set in place atop a telescope in Chile, the 3,200-megapixel LSST Camera will help researchers better understand dark matter, dark energy and other...

SLAC fires up the world's most powerful X-ray laser: LCLS-II ushers in a new era of science →

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

mplete this form.

March 12, 2024

A newly published protein structure helps explain how some anti-cancer immunotherapy treatments work

Scientists at Stanford and NYU have published and investigated a new structure of the protein LAG-3 which could enable the development of new cancer treatments.

April 18, 2024

Symmetry: Physics vocabulary, Al edition

Do you know your convolutional neural networks from your boosted decision trees?

April 15, 2024

Researchers control quantum properties of 2D materials with tailored light

The team developed a groundbreaking method that harnesses the structure of light to twist and tweak the properties of quantum materials.

February 15, 2024

A battery's hopping ions remember where they've been

Seen in atomic detail, the seemingly smooth flow of ions through a battery's electrolyte is a lot more complicated.

