Plasma accelerator activities (laser + beam) **US and European perspectives**

Jens Osterhoff Lawrence Berkeley National Laboratory

Work supported by the U.S. DOE, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231

12 10

Advanced accelerator research is a global enterprise

2016 DOE AAC R&D Roadmap and 2023 P5 Report set path for wakefield technology R&D toward a future collider

DOE AAC Roadmap (2016)

developed from 2014 P5 Report and 2015 HEPAP Subcommittee recommendations

P5 Report (2023)

....

Recommendation 4: Support a comprehensive effort to develop the resources—theoretical, computational and technological-essential to our 20-year vision for the field. This includes an aggressive R&D program that, while technologically challenging, could yield revolutionary accelerator designs that chart a realistic path to a 10 TeV pCM collider.

Investing in the future of the field to fulfill this vision requires the following:

a. mendation 6).

- HEP application main driver of US R&D lacksquare
- DOE AAC Roadmap defined path toward \bullet a future particle physics machine
- Identified key technology R&D steps lacksquare
- Guided US AAC R&D over past 8 years
- Roadmap of unconstrained scenario \bullet

Support vigorous R&D toward a cost-effective 10 TeV pCM collider based on proton, muon, or possible wakefield technologies, including an evaluation of options for US siting of such a machine, with a goal of being ready to build major test facilities and demonstrator facilities within the next 10 years (sections 3.2, 5.1, 6.5 and Recom-

10 TeV pCM technology must be developed, no concept ready, need for test facilities established

Proton collider

Key needs: high field magnets, detectors

small experimental caverns dump caverns arge experimental caverns C-hh and FCC-ee tunnel cross section

"All options for a 10 TeV pCM collider are new technologies under development and R&D is required before we can embark on building a new collider"

P5 Report (2023), p. 17

·····

Challenges for all concepts: size, luminosity, power, detector

e⁺e⁻ collisions offer similar physics to muons

Muon collider

Key needs: targets, cooling

Linear wakefield lepton collider

Key needs: avg. power, efficiency, precision (*kBELLA*) positrons (FACET-II), transformer ratio (AWA)

Potential advantage: relatively clean detector environment Conventionally too large and power hungry beyond few TeV — Advanced accelerators (> 1 GV/m) may solve this challenge

Conceptual physics considerations determine parameter ranges

Basic design choices driven by system optimization

- **Minimizing linac length** (gradient > GV/m)
- Maximizing energy efficiency (luminosity/power)
- luminosity requires repetition rate

T. Barklow et al., JINST 18 P09022 (2023); C.B. Schroeder *et al.*, JINST 18 T06001 (2023)

New US initiative to organize the community for an end-to-end 10 TeV pCM wakefield collider design

"Wakefield concepts for a collider are in the early stages of development. A critical next step is the delivery of an end-to-end design concept, including cost scales, with self-consistent parameters throughout."

P5 Report (2023), p. 85

Goal: end-to-end design concept including sub-systems Ο (detectors, beam delivery), cost estimates, self-consistency, based on strong physics case

LBNL, SLAC, ANL launched 10 TeV wakefield collider initiative Ο

- Organizes the **US wakefield accelerator community** (biweekly meetings; since January)
- Strong links to worldwide activities emerging through ICFA ANA ALEGRO and HALHF
- Strong links to particle physics incl. detectors (monthly meetings at LBNL, and with SLAC; since April)

New US initiative to organize the community for an end-to-end 10 TeV pCM wakefield collider design

"Wakefield concepts for a collider are in the early stages of development. A critical next step is the delivery of an end-to-end design concept, including cost scales, with self-consistent parameters throughout."

P5 Report (2023), p. 85

Goal: end-to-end design concept including sub-systems Ο (detectors, beam delivery), cost estimates, self-consistency, based on strong physics case

LBNL, SLAC, ANL launched 10 TeV wakefield collider initiative Ο

- Organizes the **US wakefield accelerator community** (biweekly meetings; since January)
- Strong links to worldwide activities emerging through ICFA ANA ALEGRO and HALHF
- Strong links to particle physics incl. detectors (monthly meetings at LBNL, and with SLAC; since April)

First: engage particle physics community

- Cannot feed off pre-existing physics case (unlike for a Higgs Factory)
- At 10 TeV, Vector Boson Fusion will dominate annihilation of pairs
- e^{+}/e^{-} or e^{-}/e^{-} or γ/γ collider?
- Balance technical readiness and achievable lumi vs. physics demands
- *More:* expect strong Beamstrahlung at IP, revisit paradigms - round vs. flat beams \rightarrow detector design

 $E_{\rm cm}$ [TeV]

The advanced accelerator community is retiring key risks for a plasma wakefield linac at high rate

Beam dynamics risks retired

- Hosing instability surpression → Mehrling et al., PRL 121 (2018); Benedetti et al., Phys. Plasmas 28 (2021)
- Beam scattering in plasma mitigated by strong focussing \rightarrow Zhao et al., Phys. Plasmas 27 (2020)
- Synchrotron radiation effects mitigated by needed emittances \rightarrow Schroeder et al., JINST 17 (2022)

Rapid, groundbreaking experimental community progress

- Staging of plasma modules \rightarrow Steinke et al., Nature 530 (2016), GeV-level staging experiments to start in 2024
- Stability and control of plasma stages → Maier et al., PRX 10 (2020)
- Sources and bright beam generation → Deng et al., Nature Physics 15 (2019)
- High repetition rates in plasmas \rightarrow D'Arcy et al., Nature 603 (2022)

Additional technical challenges require R&D and test facilities

- 10's to 100's of stages: beam matching / coupling between including efficiency $\geq 99\%$
- Small accelerating structures place challenging alignment and jitter tolerances
- Wall-plug power (operating costs) limits of energy reach for advanced accelerators
- Compact delivery system and final focus, spin transport in plasmas, positron acceleration

- Beam-quality preservation and efficiency by bunch shaping \rightarrow Lindstrøm et al., PRL 126 (2021), Lindstrøm et al., arXiv:2403.17855 (2024)

Laser plasma accelerator drives an FEL at 27 nm State-of-the-art in compact accelerators is FEL beam quality

Wakefield accelerator stages are approaching and exceeding select individual parameters for a future multi-TeV collider

Next steps/challenges:

- precision stage combining brightness, efficiency, alignment, stability
- coupling multiple such stages with high efficiency, tolerances
- positrons, spin transport
- compact BDS
- high average power and wall-plug efficiency
- → test facilities are needed

"In order to make a confident, informed decision on the path forward-a decision that we hope to make within the next 20 years – one or more of these technologies must reach technical maturity, allowing us to reliably estimate both cost and technical risk"

P5 draft (2023), p. 85

kBELLA addresses the efficiency, average power, and precision gap, essential for the technology to mature towards 10 TeV collider requirements

"New kW-class efficient lasers, and use of their kilohertz repetition rate for active feedback at kBELLA, will advance stage performance and enable beam tests... These (kBELLA, FACET-II, AWA), together with muon collider development, will advance the technology and feed into a future demonstrator facility to make possible a 10 TeV pCM collider (see Sec. 6.5)."

1.2

8.0

0.4

0

Frequency [kHz]

P5 Report (2023), p. 88

kBELLA will be a test facility for advanced accelerators: critical toward a 10 TeV wakefield collider

- a high intensity, kHz+, kW short pulse laser with 100 TW peak pwr.

- a **new facility** that provides radiation shielding for **multi-kHz-rate GeV-class plasma accelerators** and space for exp. beamlines

Enables precision LPA towards 10 TeV wakefield collider

Test facility to address collider performance and stability needs

Enables broad impact societal and research applications

- Path to tens of kW, high efficiency,
- and collider demonstrator
- Competitive photon sources, security, medical

FACET-II: A world-class test beam facility

R&D Coordination Panel: Plasma Accelerators

ESPP Roadmap exercise aims at delivering a collider pre-CDR study

accelerators High gradient plasma and laser accelerators

Report: Elect Report: Posi Report: Spin-**Report: Phys** Report: Low Report: Pre-Experiment:

Experiment: Module with

- Need a program (and funding)

		FSU M
Deliverable	Due by	
tron High Energy Case Study (from 175GeV to 190GeV)	Jun-24	RAL
tron High Energy Case Study (similar to above)	Jun-25	QUB
-Polarised Beams in Plasma Accelerators	Dec-25	LULI
sics Case of an Advanced Collider	Jun-24	CELIA CESTA
Energy Study Cases for Electrons and Positrons (15-50GeV)	Jun-25	CERN CLPU
CDR and Collider Feasibility Report	Dec-25	UMed UMil
High-Repetition Rate (Laser) Plasma Accelerator Module (kHz)	Dec-25	
High-Efficiency, Electron/Proton-Driven Plasma Accelerator High Beam Quality	Dec-25	ELI-ALP

Current European research in laser- and beam-driven plasma accelerators concentrated on producing highquality beams for light sources and their applications Dedicated R&D is critical for a future plasma-based collider **Test facilities** AWAKE EPAC **EuPRAXIA**

FF>> KALDERA PIP4 **SPARC**

14

R&D Coordination Panel: Plasma Accelerators

ESPP Roadmap exercise aims at delivering a collider pre-CDR study

WP No.	Workpackage	
1.1	Overall collider concepts (Higgs Factory)	
1.2	Beam driven electron linac – integrated simulations	
1.3	Laser driven electron linac	
1.4	Positron acceleration	
1.5	Spin preservation	
1.6	Final focus system	
1.7	Sustainability analysis	
2.1	High-repetition rate laser-driven plasma module (coordination)	
2.2	High rep-rate laser drivers	
2.3	High rep-rate targetry	
2.4	LPA-experimental facility design (EPAC, CALA, ELI)	
3.1	Electron-beam driven PWFA – experiment (FLASHForward/CLARA)	
3.2	Proton-driven PWFA (at AWAKE)	
4.1	Early High energy physics experiments	

accelerators plasma gradient **P** High gr and lase

Report: Elect Report: Posi Report: Spin-**Report: Phys** Report: Low Report: Pre-Experiment:

Experiment: Module with

- **Need a program (and funding)**

		FSU M
Deliverable	Due by	
tron High Energy Case Study (from 175GeV to 190GeV)	Jun-24	RAL
tron High Energy Case Study (similar to above)	Jun-25	QUB
-Polarised Beams in Plasma Accelerators	Dec-25	LULI
sics Case of an Advanced Collider	Jun-24	CELIA CESTA
Energy Study Cases for Electrons and Positrons (15-50GeV)	Jun-25	CERN CLPU
CDR and Collider Feasibility Report	Dec-25	UMed UMil
High-Repetition Rate (Laser) Plasma Accelerator Module (kHz)	Dec-25	
High-Efficiency, Electron/Proton-Driven Plasma Accelerator High Beam Quality	Dec-25	ELI-ALP

Current European research in laser- and beam-driven plasma accelerators concentrated on producing highquality beams for light sources and their applications Dedicated R&D is critical for a future plasma-based collider **Test facilities** AWAKE EPAC **EuPRAXIA**

FF>> KALDERA PIP4 **SPARC**

14

R&D Coordination Panel: Plasma Accelerators

ESPP Roadmap exercise aims at delivering a collider pre-CDR study

WP No.	Workpackage		
1.1	Overall collider concepts (Higgs Factory)		
1.2	Beam driven electron linac – integrated simulations		
1.3	Laser driven electron linac		
1.4	Positron acceleration		
1.5	Spin preservation		
1.6	Final focus system		
1.7	Sustainability analysis		
2.1	High-repetition rate laser-driven plasma module (coordination)		
2.2	High rep-rate laser drivers		
2.3	High rep-rate targetry		
2.4	LPA-experimental facility design (EPAC, CALA, ELI)		
3.1	Electron-beam driven PWFA – experiment (FLASHForward/CLARA)		
3.2	Proton-driven PWFA (at AWAKE)		
4.1	Early High energy physics experiments		

accelerators gradient plasma High grac and laser

Report: Elect Report: Posit Report: Spin-**Report: Phys** Report: Low **Report: Pre-0** Experiment:

Experiment: Module with

- **Need a program (and funding)**

		FSU M
Deliverable	Due by	
tron High Energy Case Study (from 175GeV to 190GeV)	Jun-24	RAL
tron High Energy Case Study (similar to above)	Jun-25	
-Polarised Beams in Plasma Accelerators	Dec-25	
ics Case of an Advanced Collider	Jun-24	CELIA CESTA
Energy Study Cases for Electrons and Positrons (15-50GeV)	Jun-25	CERN CLPU
CDR and Collider Feasibility Report	Dec-25	UMed
High-Repetition Rate (Laser) Plasma Accelerator Module (kHz)	Dec-25	
High-Efficiency, Electron/Proton-Driven Plasma Accelerator High Beam Quality	Dec-25	ELI-ALPS

Current European research in laser- and beam-driven plasma accelerators concentrated on producing highquality beams for light sources and their applications

Dedicated R&D is critical for a future plasma-based collider

AWAKE at CERN has a funded, programmatic path for particle physics applications and plasma accelerator challenges

HALHF

A hybrid, asymmetric, linear Higgs factory

All the details: next talk by **R.D'Arcy and C.A.Lindstrøm**

AWAKE – proton-driven PWFA experiment removes staging need

Aspirational timelines for European R&D on plasma-based colliders

		Timeline (ap
	0–10 years	1
ngle-stage	Demonstration of: Preserved beam quality, acceleration in very long plasmas, plasma uniformity (longitudinal & transverse)	Fixed-targ Dark-photon search
celerators ton-driven)		D Use of LHC beam

Single-stage
accelerators
(proton-driven)

		Timeline (approximate/aspirational)		
	0–5 years	5–10 years	10–15 years	15–25 ye
Multistage accelerators (Electron-driven or laser-driven)	Pre-CDR (HALHF) Simulation study to determine self-consistent parameters (demonstration goals)	Demonstration of:	Multistage tech demonstrator Strong-field QED experiment (25–100 GeV e ⁻)	
		stabilisation (active and passive)		(Facility upgrade)
		Demonstration of: High wall-plug efficiency (e ⁻ drivers), preserved beam quality & spin polarization, high rep. rate, plasma temporal uniformity & cell cooling		Higgs factory Asymmetric, plasm collider (250–380 (
		Demonstration of: Energy-efficient positron acceleration in plasma, high wall-plug efficiency (laser driver ultra-low emittances, energy recovery schemes, compact beam-delivery systems		

EuPRAXIA

R&D on EuPRAXIA will de-risk HALHF and other plasma-based collider concepts considerably

Pursuit of plasma wakefield R&D complementary in US and Europe Potential for leveraging strong synergies by connecting/coordinating US and European efforts

- Plasma wakefield accelerators are continuing to progress at a rapid pace, have recently demonstrated beam parameters for photon science applications
- Progress toward colliders encouraging challenges remain: efficiency, avg. power, multi-staging, ...
- New scheme, HALHF, demonstrates cost saving potential, introduces plasma collider design processes - P5 sets focus on a 10 TeV pCM collider, no tech ready, wakefields are a contender, design launched
- We need intense R&D and test facilities to close the existing technology capability gaps for HALHF + 10 TeV collider
- Intensified coordination/collaboration on collider designs, technology, test facilities, demonstrators between US and European communities will be mutually beneficial and is synergistic

 - Goals may differ, but physics/tech challenges and processes (e.g. cost models) strongly linked - Realizing a collider incl. needed resources is a global effort

····

