Muon Collider Physics Impact and Detector Needs

Karri Folan DiPetrillo *on behalf of the IMCC* European Lab Directors Workshop 7 June 2024

Open questions in particle physics

About the Standard Model

What is the nature of the Higgs Boson & electroweak symmetry breaking?

Karri Folan DiPetrillo

And the observed universe What is dark matter? What causes baryogenesis?

Which collider(s) should we build?

Compare reach from precision (indirect) and energy (direct) w/ realistic models eg. modified higgs couplings = new particles

→ framework for how much energy/precision we need

	HL-LHC	Higgs Factory
liggs Precision	~few%	~0.1%
ndirect Reach	0.1-1 TeV	~few TeV
Direct reach	~1 TeV	_

Microscopic nature of the higgs

Is there new physics preventing m_h from being pulled up to Plank scale?

Data & theory suggest strongly coupled particles > 1 TeV

Electroweak symmetry breaking

Was there a first order phase transition? Is electroweak symmetry restored at high temperatures? Requires measuring Higgs self-coupling with few % uncertainty

Producing enough multi-Higgs events is only possible at a 10 TeV scale collider

Dark Matter

Karri Folan DiPetrillo

DM Complementarity Report: <u>2211.07027</u>

We've yet to probe thermal WIMPs

Definitive observation & characterization would require a multi-TeV scale collider

A new way forward?

Break the traditional paradigm of larger and larger e⁺e⁻ and hadron colliders Muons = massive fundamental particles = compact & power-efficient

Two colliders in one

Karri Folan DiPetrillo

Energy reach & precision electroweak physics in same machine

 $ar{
u}_{\mu}$

More complicated than 10 TeV $\mu\mu \sim 100$ TeV pp

2303.08533

Example of Direct reach Supersymmetry

MuC: pair-production up to $\sqrt{s/2}$ FCC-hh: better for stops (color charge) But, most <u>realistic</u> models have TeV scale sleptons/electroweakinos

Karri Folan DiPetrillo

2303.08533

Example of Indirect Reach: Higgs Compositeness Diboson & di-fermion final states MuC: sensitivity scales with \sqrt{s} FCC-hh: lower effective parton luminosity

Karri Folan DiPetrillo

2303.08533

Electroweak precision

$\geq 10^7$ single higgs events \rightarrow competitive with e+e- Higgs Factories ~10k di-higgs events \rightarrow self-coupling competitive with 100 TeV pp

O(100) GeV scale SM physics

foward muons/neutrinos

<i>к</i> -0	HL-	LHeC	HE	-LHC		ILC			CLIC	}	CEPC	FC	C-ee	FCC-ee/	$\mu^+\mu^-$
fit	LHC		S2	S2'	250	500	1000	380	1500	3000		240	365	eh/hh	10000
κ_W	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14	0.11
κ_Z	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12	0.35
κ_g	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49	0.45
κ_γ	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29	0.84
$\kappa_{Z\gamma}$	10.	_	5.7	3.8	99 *	86*	$85\star$	$120\star$	15	6.9	8.2	81*	$75\star$	0.69	5.5
κ_c	-	4.1	-	_	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95	1.8
κ_t	3.3	—	2.8	1.7	-	6.9	1.6	—	—	2.7	-	-	—	1.0	1.4
κ_b	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43	0.24
κ_{μ}	4.6	_	2.5	1.7	15	9.4	6.2	$320 \star$	13	5.8	8.9	10	8.9	0.41	2.9
$\kappa_{ au}$	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44	0.59

And we can test *origin* of deviations!

Karri Folan DiPetrillo

The Challenge

Muon lifetime τ =2.2 µs

- Need to produce, cool, accelerate and collide muons before they decay
- More from Daniel & Diktys!

Karri Folan DiPetrillo

Collision environment

Depends on energy, physics goals, and cross-sections Goal: measure di-higgs cross-section (few fb) with few % uncertainty

Karri Folan DiPetrillo

= 1 and maximize N_{μ} per bunch	~2.10 ¹² N _µ
e circumference, maximize f	30 kHz
te $\sigma_x \sigma_y$ beam size, aim for	~O(10) µm
ct muons every βγτ	100 ms
w/in 20 m of detector	107

Tungsten Nozzles

Suppress high energy component

Tradeoff: increase in low energy neutrons

Karri Folan DiPetrillo

Single µ decay

Inside the detector

Compared to HL-LHC

Up to ~10 x hit density

~1/1000 event rate

Similar dose & fluence

100 TeV pp ~3 orders of magnitude worse ~10¹⁸ MeV-neq /cm²

Muon Co HL-LH

	Maximum	Dose (Mrad)	Maximum Fluence (1 MeV-neq/cm ²)			
	R=22 mm	R=1500 mm	R=22 mm	R=1500 mm		
ollider	10	0.1	10^{15}	10^{14}		
HC	100	0.1	10^{15}	10^{13}		

Background properties

With standard nozzle ~10⁸ low momentum particles per event But this background looks very different from signal!

Technology needs

Detector reference	Hit density [mm ⁻²]			
	MCD	ATLAS ITk		
Pixel Layer 0	3.68	0.643		
Pixel Layer 1	0.51	0.022		
→25 x 25 µm ² Challenges: consumpt	with 30 front-end ion & rea	ps timing d power adout		

Karri Folan DiPetrillo

Beam background primarily a challenge for the pixels & electromagnetic calorimeter

Similar to HL-LHC

Ambient energy 50 GeV/unit area

 \rightarrow Silicon+Tungsten 5x5 mm² cells Timing resolution (~100 ps) Longitudinal segmentation

Room for new ideas!

Muon Collider Detector

Major outcomes of Snowmass/IMCC Baseline Detector for 3 TeV Beam Induced Background with FLUKA Full simulation physics studies

Now preparing for European Strategy!

Karri Folan DiPetrillo

2303.08533

Work in progress: 10 TeV design

Need to grow the detector

Solenoid: Higher B-field & inner radius technically challenging

$$E_{\text{stored}} = \frac{B^2}{2\mu_0} \pi R^2 L$$

Need to reestablish expertise to build CMSstyle magnets!

Karri Folan DiPetrillo

Detector Magnet Workshop Summary by A. Bersani

Work in progress: Machine detector interface

Beam induced background highly dependent on nozzle configuration Systematic optimization in progress!

Karri Folan DiPetrillo

D. Calzorlari

Work in progress: Map back to physics

Separate ZZ and WW fusion Reduce backgrounds Br($h \rightarrow invisible$) via m_{miss} Γ_h via inclusive rate

M. Forslund, P Meade M. Ruhdorfer, E. Salvioni, A. Wulzer P. Li, Z. Liu, K.F. Lyu

Karri Folan DiPetrillo

eg. to fully unlock higgs precision, is forward muon tagging possible?

 $\eta_{
m max}$

20%15%10%5%

22

30% 25%

35%

40%

Takeaway: Can we do physics?

Baseline detector design & full simulation studies indicate yes! With work in progress we can likely do even better :)

Karri Folan DiPetrillo

2303.08533

Conclusions

- Strong physics case for 10 TeV Muon Collider
- More work is needed & in progress! •
 - Design studies in full simulation (CPU intensive) •
 - Map back to physics questions & technology needs •
 - Detector R&D: high granularity, precision timing, AI-microelectronics, DAQ •

Karri Folan DiPetrillo

Backup

Incoherent e+e- background

Initial look at e+e- pair production from beamstrahlung lower multiplicity than BIB due to muon decay but higher energy e[±] →manageable increase in occupancy of innermost layers

Luminosity

Karri Folan DiPetrillo

Proposal to use central muons for μC Questions: Stats? Theory precision?

> $\sqrt{s}=1.5$ TeV, lumi = 1e34 Remaining events

Assuming a Snowmass year = 10^7 seconds $\mathcal{L}=1.25 \cdot 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ Total events: 213 K $\frac{\Delta \mathcal{L}}{\mathcal{L}} \sim \frac{1}{\sqrt{N}} = 0.002$

We'll need something else to monitor luminosity in real time

Beam induced background w/ FLUKA

Multiple experts producing and validating BIB at 1.5, 3, and 10 TeV

Comparing occupancies at different energies

Karri Folan DiPetrillo

Overview by D. Calzolari

Characterizing BIB contributions in tracker

eg. particle type: primary vs secondary electrons spatial origin: upstream vs downstream

Towards a 10 TeV detector

Momentum Resolution

$$\left(\frac{\sigma_{p_{\rm T}}}{p_{\rm T}}\right) \sim \frac{p_{\rm T}}{BL^2} \frac{\sigma_{\rm point}}{\sqrt{N}}$$

Aim for 5-20% at 5 TeV \rightarrow 5 T solenoid, R \geq 1.5 m

B-meson decay length $\langle L \rangle \sim 100 \text{ mm} \times \left(\frac{E}{\text{TeV}}\right)$

Karri Folan DiPetrillo

Shower containment

Need to increase Calorimeter λ and X_0

Detector Magnet

Increasing B-field & inner radius technically challenging Requires Aluminum-reinforced NbTi/Cu

Need to reestablish expertise to build CMS style magnets!

Tracker

Large area & highly granular

- ~100 m² of silicon sensors
- ~ 2B channels
- Promising R&D directions
 - Monolithic sensors
 - Devices with intrinsic gain
 - Intelligent sensors

Challenges:

- Power consumption
- DAQ/trigger: O(100) TB/s
- "Streaming" readout looks feasible

Karri Folan DiPetrillo

Calorimeter

Background = large, out of time low energy cloud of neutrals ~2 MeV y (96%) ~500 MeV n (4%)

Current design assumes

ECAL: Silicon+Tungsten 5x5 mm² cells HCAL: Steel+Scintillator 30x30 mm² cells Timing resolution (~100 ps) + Longitudinal segmentation

> Room for new ideas (e.g. Crilin, Calvision?)

Trigger/DAQ

Target "streaming" readout

- Total readout rate = same as the CMS HL-LHC max HLT input rate •
- Reading out all BIB hits requires increased cabling, cooling •
- Pushes the challenge from trigger to <u>on-detector processing</u> •
- Event rate $\sim 30 \text{ kHz} \rightarrow \text{plenty of time to process full event off detector}$ •

	Readout Window	E Threshold	Hit Size	Total Rate
Tracker	1 ns	n/a	32 bits	~40 Tb/s
ECAL	15 ns	0.2 MeV	20 bits	~30 Tb/s
HCAL	15 ns	0.2 MeV	20 bits	~3 Tb/s
Total				60 Tb/s

Karri Folan DiPetrillo

Forward Muon Tagging

Karri Folan DiPetrillo

B-field & path-length for momentum measurement? Effects of scattering/energy loss from ~2000 X₀ of Tungsten? What technology can withstand BIB?

See presentation @MDI workshop by D. Calzolari and M. Casarsa

Karri Folan DiPetrillo

MuC has an edge in sensitivity when Z' is so heavy that only indirect effects can be measured

Subsystem Design ↔ Technology needs

Need to define muon collider specific needs (strict & soft) to ensure technology converges Also a good way to strengthen community with instrumentation experts

BIB rejection with pixel cluster shapes

C. Sellgren, Simone Pagan Griso

